文章编号:1000-582X(2007)04-0072-04

Al 熔体与非晶 SiO₂ 的扩散反应动力学^{*}

周 正,冯 毅,谢凤虎,肖 梅

(重庆大学 材料科学与工程学院,重庆 400030)

摘 要:利用 SiO₂ 玻璃尺寸大的特点,研究了 Al 与 SiO₂ 玻璃反应组织和反应动力学.实验发现,长时间反应可以得到 AL/Al₂O₃ 复合组织,在 Al 熔体和 AL/Al₂O₃ 复合组织间存在扩散过渡层.测定了扩散 过渡层和 AL/Al₂O₃ 复合层的生长动力学.分析了扩散过渡层的动力学规律.讨论了 Si 对扩散过渡层和 复合层形成动力学的影响,发现 AL/Al₂O₃ 复合层形成的抛物线动力学特征.

关键词:铝;SiO2 玻璃;扩散反应;动力学

中图分类号:TB331

在一些重要材料和器件的合成制备研究中涉及 Al 与非晶 SiO₂ 的反应现象,如合成制备 Al₂O₃/Al 和 SiC/Al、MoSi₂ 材料及 MOS 器件等^[19].在这些领域 中,Al 与 SiO₂ 的反应都在微观尺寸范围内.比如,在合 成制备 SiC/Al 和 MOS 器件时,SiO₂ 薄层通常只有几 十纳米到几百纳米厚,这给研究其微观组织反应特征 带来了一定困难,尤其是增加了对其反应动力学研究 的难度.

基于对上述存在问题的分析思索,笔者提出采用 大块 SiO₂ 玻璃,利用 SiO₂ 玻璃尺寸大的优势,通过 Al 与 SiO₂ 玻璃间的反应研究,可以比较详细地考察 Al 与 非晶 SiO₂ 反应时的动力学特点.研究对制备 Al₂O₃/Al 和 SiC/Al、MoSi₂ 材料及 MOS 器件等具有重要理论 意义.

1 实验方法

采用工业纯 Al 和 Al - 12% Si 合金作为反应铝熔 体. 石英玻璃的 SiO₂ 纯度为 99. 99%. 实验方法是将 SiO₂ 试样系上重物后同时浸入 Al 熔体进行反应,于一 定温度保温一定时间后,分别取出空冷中止其反应. 试 样磨制、抛光后未经任何腐蚀,直接进行金相电镜组织 结构分析. 透射电镜试样是将金相样线切割成厚 0.15~0.30 mm、直径为 φ3 mm 的小园片,经挖孔后在 Catan - 600型离子减薄机减薄完成,用 AMRAY 1000B 文献标志码:A

和 AMRAY 1845FE 型扫描电子显微镜进行组织形貌 及成分分析,透射电镜组织观察在 H - 800 和 JEM200CX 型透射电子显微镜上进行.

2 实验结果及讨论

2.1 过渡层和复合层形貌及其动力学

Al 与 SiO₂ 玻璃在高温下反应生成 Al/Al₂O₃ 复合 组织(见图1),研究表明此复合组织由互为网络的 Al 与 Al₂O₃ 组成^[10]. 从 Al 与 SiO₂ 玻璃在等温反应得到 的组织中可以发现, Al/Al₂O₃ 复合组织前沿始终存在 一白亮色带状过渡层,过渡层的厚度随时间变化(见 图1). 因而可以认为, Al 与 SiO₂ 在反应形成 Al/Al₂O₃ 之前首先形成此过渡层,过渡层的形成与 Al 向 SiO₂ 玻璃中的扩散反应过程相关, Al/Al₂O₃ 复合层的生长 增厚过程受此过渡层控制.

实验测定了 Al 及 Al – 12% Si 熔体在 SiO₂ 中扩散 反应时过渡层厚度随时间变化的情况(见图 2).由图 2 可知,过渡层厚度在一定时间内随反应时间延长而增 厚,达到一个最大值后,过渡层厚度逐渐变小.

图 3 是反应复合层厚度随反应时间变化的生长动 力学.图 3 表明,在反应初期,Al - 12Si 熔体反应形成 Al/Al₂O₃ 的厚度比纯 Al 熔体的小.反应一定时间后, 2 种反应条件下的 Al/Al₂O₃ 厚度接近一致,它们的 Al/Al₂O₃ 复合层厚度与时间的关系类似抛物线关系.

 收稿日期:2006-12-18
基金项目:重庆市应用基础研究项目(7940);重庆大学骨干教师资助项目
作者简介:周正(1963-),男,重庆大学副研究员,博士,主要从事金属及陶瓷材料的基础理论及应用研究. (Tel.):023-65102461;E-mail:zhzheng6423@hotmail.com.

(a) 反应15 min过渡层形貌

(b) 反应1 h过渡层形貌

图3 Al与SiO₂ 在1000 ℃等温反应时的 Al/Al₂O₃ 生长动力学
综合图 1 - 图 3 的实验结果分析发现,在过渡层
厚度达到最大值以后,有极薄的 Al/Al₂O₃ 复合层组织

出现(见图1(a)).当反应时间再进一步延长时,复合 层厚度继续增加,过渡层厚度继续变薄.反应时间到达 一定值后,复合层厚度仍继续增加,过渡层厚度变化不 大(见图1(b)).此外,Al熔体中的Si含量对过渡层生 长动力学影响趋势和纯 Al熔体一致(见图2).

2.2 过渡层组织

从图 1 - 图 3 中可以发现,过渡层厚度随反应时间的延长呈现减薄的趋势,而反应层厚度却呈现抛物 线增厚的规律.对二者间的关系在理论和实验方面进 行了研究.

SiO₂ - Al₂O₃ 相图中存在中间相 3Al₂O₃ · 2SiO₂ 相. 因此, Al 在向 SiO₂ 的扩散反应过程中,将首先形成 3Al₂O₃ · 2SiO₂ 相,然后才形成 Al₂O₃. 图 4 分别是 Al 及 Al - 12% Si 在 1 100 ℃等温初期的过渡层的 TEM 形貌. 图 4 中的左侧对应过渡层组织,右侧为 SiO₂ 玻 璃. 从图中左侧过渡层组织中可以发现,过渡层中出现 明显 的 3Al₂O₃ · 2SiO₂ 晶核,其中仍可见未发生 3Al₂O₃ · 2SiO₂ 形核的 SiO₂ 白色块状区域.

(a) Al 1 100 ℃

(b) Al-12%Si 1 100 °C

图4 Al 及 Al - 12% Si 与 SiO, 等温反应 15 min 过渡层的 TEM 形貌

仔细观察发现,在出现 3Al₂O₃ • 2SiO₂ 晶核的过 渡层与 SiO₂ 之间存在一定厚度的条状区域,其中没有 任何析出物,此区域与出现 3Al₂O₃ • 2SiO₂ 晶核的过 渡层间没有明显的界面.因此可以得出,过渡层实际上 是由 2 个区域组成:SiO₂ 上出现明显 3Al₂O₃ • 2SiO₂ 晶核的区域和没有任何析出物的 SiO₂ 区域.

3 讨论

3.1 过渡层生长动力学

Al 与 SiO₂ 玻璃反应层组织形貌的研究表明, Al 与 SiO₂ 玻璃之间的反应系反应扩散过程,其过程应遵循下列规律^[11]:

1)整个反应扩散由扩散和相变反应2个步骤组成,但其中扩散是控制因素;

2) 在相界面处存在浓度的突变, 突变的浓度正好 对应于相图中相的极限溶解度;

3) 在平衡条件下, 形成的新相数目应服从相律;

4)新相形成的规律与相图相对应;

5)新相长大的动力学规律应满足

$$l^{n} = K\tau, l < n < 4,$$
 (1)

1为相区宽度.

对于 Al 向非晶 SiO₂ 中的等温反应扩散过程,根据相律,反应扩散过程应该存在两相区.从图 4 过渡层组成中发现,过渡层中还存在带状的 SiO₂ 相.带状 SiO₂ 相存在个别 $3Al_2O_3 \cdot 2SiO_2$ 形核迹象的事实表明,Al 向非晶 SiO₂ 扩散反应过程中有 Al 在非晶 SiO₂存在一定固溶度的 SiO₂(Al)相存在.这与文献[4]认为在 SiC 表层的非晶 SiO₂ 薄层中存在 Al 的固溶度的观点相吻合.因此,可以认为 Al 向非晶 SiO₂ 的反应扩散层由 $3Al_2O_3 \cdot 2$ SiO₂ 和 SiO₂(Al)两相组成.

根据上述实验及分析, 描绘出 Al 向非晶 SiO₂ 扩 散反应过程的示意图(见图 5).

图 5 过渡层中 Al 浓度分布

在反应扩散过程由扩散控制的前提下,Al 与 SiO₂ 反应的扩散层动力学应与 Al/Al₂O₃ 复合层生长动力 学相吻合,而图 3 中 Al/Al₂O₃ 的相区宽度满足 $l^2 = K_{\tau,n}$ 等于 2,说明 Al 向非晶 SiO₂ 中的扩散是按简单 点阵扩散机制进行.

3.2 过渡层厚度变化的原因

Al 与 SiO₂ 玻璃反应时,存在 2 个过程:一是 Al 向
SiO₂ 中扩散,二是 Al/Al₂O₃ 复合层的形成(见图 5),
此时有:

Al 向 SiO₂ 中扩散
$$J = \frac{D}{X}(C_0 - C)$$
, (2)

$$AL/Al_2O_3 \mathbb{T} K \mathbb{C}, \qquad (3)$$

式中:D为Al在SiO₂中扩散系数;X为过渡层厚度; C_0 为Al/Al₂O₃与过渡层界面的Al浓度;C为过渡层与SiO₂(Al)玻璃界面的Al浓度;K为界面化学反应速率常数.

当 AL/Al₂O₃ 复合层形成速率与 Al 向 SiO₂ 中扩散 速率保持平衡时,r = J,故得

$$C = \frac{DC_0}{X} / \left(K + \frac{D}{X} \right). \tag{4}$$

$$r = \frac{1}{V} \cdot \frac{\mathrm{d}x}{\mathrm{d}t},\tag{5}$$

V为过渡层的摩尔体积.

X

将式(4)代人式(3)并与式(5)相等,得
(
$$KX + D$$
)d $X = KDC_0Vdt$.
在 $t = 0 - \tau, X = 0 - X$ 界限内积分上式,得:
 $X^2/2 + XD/K = DVC_0\tau$. (6)

因此,当
$$D \gg K$$
 时,由式(6)有 $\frac{KD}{K} \gg \frac{X^2}{2}$,从而得:

$$X = KVC_0\tau. \tag{7}$$

式(7)表示,过渡层形成初期,过渡层厚度与时间 呈线性关系.

当 X 很大, $K \gg D$,即过渡层形成后期时,式(6)中 $\frac{X^2}{2} \gg \frac{XD}{K}$,从而得

$$X^2 = 2DVC_0\tau. \tag{8}$$

式(8)表示,过渡层厚度与时间将呈抛物线关系. 上述分析表明,Al向SiO₂中反应扩散只形成过渡层时,即还没有Al/Al₂O₃复合层出现时,过渡层满足 式(7)和式(8)的动力学规律.

当出现 Al/Al₂O₃ 复合层时,此时 Al/Al₂O₃ 形成 前沿的 Al 浓度与原始 Al 熔体成分存在较大差异:根 据 4Al + 3SiO₂—2Al₂O₃ + 3Si 反应,形成 Al₂O₃ 的同 时,还原出来的 Si 溶入 Al 后将使 Al 熔体变为 Al – Si 熔体,因而使 C_0 值下降;同时,3Al₂O₃ · 2SiO₂ 的形成 将伴随体积收缩,使 SiO₂(Al)层承受的应力增加.根 据扩散系数与压力 P 的关系(式(9))^[9],压力 P 的存 在使 D 值减小.因此,虽然此时的过渡层厚度 x 仍遵 循式(8),但 C_0 和 D 的变小将使过渡层厚度 x 减少.

$$D = D_0 \exp\left[-\frac{G(0) + \frac{1}{3}V_o P}{RT}\right],$$
 (9)

式中: D_0 为常数;G(0)为常压下晶体生长激活能; V_0 为原子体积;R为气体常数.

由上述对反应扩散过程的分析可知, Al/Al₂O₃复 合层的生长受控于 Al 在 SiO₂中的扩散过程. Al/Al₂O₃ 复合层的生长动力学呈现抛物线规律, 而扩散过渡层 的生长动力学却没有这种规律.

2 种成分的 Al 熔体与 SiO₂ 等温反应时, Al/Al₂O₃ 的生长动力学(见图 3)可作如下解释:

在 Al/Al₂O₃ 形成初期,由于 Al/Al₂O₃ 层厚很薄, Al 熔体中的 Al 很容易扩散到 Al/Al₂O₃ 反应前沿,同 时,反应还原出来的 Si 也很容易扩散出 Al/Al₂O₃ 反应 前沿区域,因而 Al/Al₂O₃ 反应前沿区域的 Si 浓度并不 高,Al 成分浓度基本上保持不变.此时,Al 在复合层中 的扩散是复合层生长的限制性条件,Al/Al₂O₃ 的形成 取决于 Al 向 SiO₂ 中的扩散.

在反应一定时间后,即 Al/Al₂O₃ 复合层厚度增加 时,由于 Al 与 Si 的扩散距离增加,扩散逐渐变得困 难,Al 与 Si 的扩散成为限制性条件,还原出来的 Si 不 容易扩散出反应前沿,造成 2 种 Al 熔体的 C_0 值不同, 因而出现 Al 及 Al ~ 12% Si 熔体的 Al/Al₂O₃ 的生长动 力学的差异(见图 3).当复合层厚度进一步增加到一 定值后,反应前沿的 Si 更不容易扩散出反应前沿区 域,2 种熔体在反应前沿的 Al 浓度趋于相同,两者的 复合层增厚动力学趋于一致.此时 C_0 与 P 趋于保持 固定值,Al 熔体与 SiO₂ 进入稳态的反应扩散过程,因 而过渡层的厚度从此刻起基本上变化不大(见图 1 (b),图 2).

4 结 论

1) Al 与 SiO₂ 玻璃长时间反应可以得到 Al/Al₂O₃ 复合组织,在 Al 熔体和 Al/Al₂O₃ 复合组织间存在扩 散过渡层. 扩散过渡层由出现 3Al₂O₃ · 2SiO₂ 晶核析 出的 SiO₂ 区域和存在 Al 固溶度的 SiO₂ 区域组成,这 2 个区域没有明显界面. 2)实验发现,扩散过渡层厚度随反应时间的延长 而变薄,反应一定时间后厚度保持一定. Al/Al₂O₃ 复 合层动力学呈现抛物线特征. Al 熔体中 Si 含量不影响 扩散过渡层和 Al/Al₂O₃ 复合层形成的动力学特征.

参考文献:

- ZHONG W M, ESPERANCE G L', SUERY M. Interfacial reactions in Al - Mg(5083)/ Al₂O_{3p} composites during fabrication and remelting[J]. Metall Mater Trans, 1995, 26A: 2625-2636.
- [2] ZHONG W M, ESPERANCE G L', SUERY M. Interfactical reactions in Al – Mg(5083) / SiCp composites during fabrication and remelting[J]. Metall Mater Trans, 1995, 26A: 2637-2649.
- [3] RATNAPARKHI PL, HOWE J M. Characterization of a diffusion-bonded Al – Mg alloy/SiC interface by high resolution and analytical electron microscopy[J]. Metall Mater Trans, 1994,25A: 617-627.
- [4] PAI B C, RAMANI GEETHA, PILLAI R M, et al. Review: role of magnesium in cast aluminum alloy matrix composites [J]. J Mater Sci, 1995, 30:1903-1911.
- [5] ZHOU X B, DE HOSSON J TH M. Reactive wetting of liquid metals on ceramics substrates [J]. Acta Mater, 1996, 44(2): 421-426.
- [6] WANG NING, WANG ZHIRUI, WEATHERLY G C. Formation of magnesium aluminate (spinel) in SiC particulatereinforced Al(A356) metal matrix composites [J]. Metall Trans, 1992, 23A: 1423-1429.
- [7] JONAS T R, CORNIE J A, RUSSELL K C. Infiltration and wetting of alumina particulate performs by aluminum and aluminum-magnesium alloys [J]. Metall Trans, 1995, 26A: 1491-1497.
- [8] 马勤,杨延清,康沫狂.二硅化钼与及其复合材料的应用 及展望[J].材料导报,1997,11(2):61-64.
- [9] 姚斌, 王爱民, 李宏,等. 静高压下有表面化学反应的非 晶合金晶化研究[J]. 物理学报, 1996, 45(5):817-825.
- [10] 周正. SiO₂ 玻璃原位反应合成 Al/Al₂O₃ 复合材料[J]. 复合材料学报, 2004,21(5):152-156.
- [11] 戚正风. 固态金属中的扩散和相变[M]. 北京: 机械工 业出版社, 1998.

Diffusion Kinetics of Reaction Between Aluminum Melts and Amorphous Silica ZHOU Zheng, FENG Yi, XIE Feng-hu, XIAO Mei

(College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China)

Abstract: The microstructures and kinetics of reaction between aluminum and amorphous silica are investigated by making use of advantages of silica glass's larger dimension. Al/Al_2O_3 composite microstructures can be synthesized by longer time reaction and the diffusion transit layer is discovered between aluminum melts and the Al/Al_2O_3 composite layer. The growth kinetics of diffusion transit layer and Al/Al_2O_3 composite layer are also measured and discussed. The effect of silicon element on the diffusion transit layer and the composite layer' kinetics is discussed and parabola growth kinetics of Al/Al_2O_3 composite layer is determined.

Key words: aluminum; amorphous silica; reaction diffusion; kinetics