文章编号:1000-582X(2009)07-0809-06

中空玻璃空气夹层内的自然对流换热

王厚华,黄春勇

(重庆大学城市建设与环境工程学院,重庆400030)

摘 要:从传热学的角度论述和分析了中空玻璃空气夹层内自然对流换热。采用 FLUENT 软件对夹层厚度δ为6、9、12、14和16mm时的自然对流换热进行数值模拟,并将所获得的对流换热量与按纯导热计算的结果作了比较分析。结果表明,空气夹层内的自然对流换热的主要影响因素包括气体种类、瑞利数 Ra、空气夹层的相对厚度δ/H和壁面温差ΔT。在设定条件下,中空玻璃空气夹层内自然对流换热在上述δ下可近似作为纯导热处理。通过模拟结果和经验公式分别计算了中空玻璃传热系数 K,与中空玻璃热工计算的成熟软件的计算结果比较接近。

Natural convection heat transfer in the air-layer of insulating glass

WANG Hou-hua, HUANG Chun-yong

(College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400030, P. R. China)

Abstract: The numerical simulation with FLUENT software is addressed for the natural convection heat transfer under the conditions of different air-layer thickness with 6 mm, 9 mm, 12 mm, 14 mm and 16 mm. The heat transfer rate is compared with that by heat conduction. Gas types, Rayleigh number (Ra), the relative thickness of air-layer, δ/H , and the surface (ΔT) are main factors for natural convection heat transfer. The natural convection heat transfer could be approximately regarded as the pure heat conduction in the conditions of above air-layer thickness. The heat transfer coefficient of the insulating glass with simulation is approximate to that with empirical calculation.

Key words: building energy efficiency; insulating glass, air-layer; heat transfer coefficient

在建筑围护结构中,门窗单位面积的能耗约为 墙体4倍,屋面5倍,地面20多倍,约占建筑围护结 构总能耗的40%~50%^[1]。因此,增强门窗的保温 隔热性能,减少门窗的能耗,是改善室内热环境和 提高建筑节能的重要环节,而其中减少通过玻璃的 能耗尤为重要。普通单层平板玻璃本身几乎没有隔 热能力,这是单层玻璃窗能耗很大的原因。中空玻 璃因其内部气体处于一个封闭的空间,决定其隔热 性能的主要是空气夹层的热绝缘作用,夹层中气体的 对流换热非常微弱,且气体的导热系数远小于玻璃的 导热系数,因而能有效地减小热损失,降低建筑能耗, 这是中空玻璃作为节能产品得到广泛应用的原因。

建设部 2001 年发布的《夏热冬冷地区居住建筑 节能设计标准》(JGJ134-2001)中,对窗墙面积比 大于 0.45 且小于 0.5 的外窗传热系数限制指标为 2.5 W/(m² • K)。这对普通中空玻璃的节能性能

收稿日期:2009-01-14

基金项目:"十一五"国家科技支撑计划重大资助项目(2006BAJ01A05)

作者简介:王厚华(1952-),男,重庆大学副教授,主要从事建筑节能方向的研究,(Tel)023-65121647;

提出了更高的要求。

目前相关研究资料普遍认为,当空气夹层厚度 为 12 mm 时中空玻璃的节能效果最佳^[2],但对中 空玻璃空气夹层最佳厚度的理论分析欠缺,解释模 糊。大量的研究成果证实^[3-9]:影响中空玻璃隔热 效果的主要因素为瑞利数 Ra、气体夹层的相对厚 度 δ/H 、夹层内气体的种类和冷热壁面间的温差 ΔT ,单一最佳夹层厚度的概念是不合理的。通过 数值模拟研究,详细地分析了影响中空玻璃空气夹 层内自然对流换热的因素,讨论了不同情况下空气 夹层的最佳厚度,并计算了中空玻璃的传热系 数 K。

1 中空玻璃传热系数K的计算方法

中空玻璃的主要热工性能参数包括传热系数 K 值和遮阳系数 SC 值。其中传热系数 K 值是指单位 时间、单位壁表面积上,冷热流体间每单位温度差时 传递的热量,也就是说,K 值是中空玻璃系统总热阻 R 的倒数,按下述经验公式^[10]计算。

1.1 一般原理

中空玻璃系统的总热阻包括室外侧表面传热热 阻、室外侧玻璃导热热阻、空气夹层热阻、室内侧玻 璃导热热阻以及室内侧表面换热热阻,即

$$R = \frac{1}{h_{\rm e}} + \frac{1}{h_{\rm s}} + \sum R_{g,i} + \frac{1}{h_i} , \qquad (1)$$

式中: h_i 、 h_e 分别为玻璃系统室内、外侧表面传热系数, $W/(m^2 \cdot K)$; h_s 为空气夹层的复合换热表面传热系数, $W/(m^2 \cdot K)$; $R_{g,i}$ 为每层玻璃的导热热阻, $m^2 \cdot K/W$ 。

空气夹层的复合换热表面传热系数按下式计算 $h_s = h_r + h_c$, (2)

式中:h_r为辐射换热表面传热系数,W/(m² • K); h_c为气体的对流换热表面传热系数,W/(m² • K)。 **1.2** 气体对流换热表面传热系数 h_c

气体对流换热表面传热系数由下式给出

$$h_{\rm c} = N u \, \frac{\lambda}{\delta}, \qquad (3)$$

式中: δ 为气体夹层厚度,m; λ 为气体导热系数, W/(m•K);努谢尔特数 $Nu = ARa^{n}$;瑞利数 $Ra = \frac{ga\delta^{3}\Delta T}{av}$ 。其中 g 为重力加速度,m²/s; α 为体积膨胀系数, $\alpha = 1/T_{m}$,1/K; T_{m} 为玻璃的平均温度, $T_{m} = (T_{h} + T_{1})/2$,K; T_{h} 、T₁分别为冷、热壁面温度,K; ΔT 为冷、热壁面的温差,K;a 为气体热扩散 率, m^2/s ; ν 为气体的运动粘性系数, m^2/s 。

如果 Nu < 1,则将 Nu 取为 1。

对于垂直空间, A = 0.035, n = 0.38;水平情况, A = 0.16, n = 0.28;倾斜 45°, A = 0.10, n = 0.31。

1.3 辐射换热表面传热系数 h,

辐射换热表面传热系数由下式给出

$$h_{r} = \sigma_{b} \left(\frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}} - 1 \right)^{-1} (T_{h}^{2} + T_{1}^{2}) (T_{h} + T_{1}),$$
(4)

式中: ϵ_1 、 ϵ_2 分别为气体夹层中玻璃界面在平均热力学温度 T_m 下的校正发射率; σ_b 为斯蒂芬-玻耳兹曼常数, $\sigma_b = 5.67 \times 10^{-8} \text{ W}/(\text{m}^2 \cdot \text{K}^4)$ 。

1.4 K值计算的标准态取值

基本参考值为:玻璃热阻率 r=1 m·K/W;普 通玻璃表面的校正发射率 $\varepsilon = 0.837$;玻璃内外表面 温差 $\Delta T = 15$ K;玻璃平均温度 $T_m = 283$ K;外表面 传热系数 $h_e = 23$ W/(m² · K);内表面传热系数 $h_i = 8$ W/(m² · K)。

2 空气夹层内的自然对流换热数值 模拟

2.1 空气夹层物理模型

空气夹层物理模型为上下壁端部绝热,左壁为 高温壁 T_h ,右壁为低温壁 T_c ,如图 1。空气夹层高 度 H 分别为 800、1 200 和 1 500 mm;厚度 δ 分别为 6、9、12、14 和 16 mm;低温壁 T_c 考虑为夏季室内空 调设计温度 26 ℃,壁面温差 ΔT 取 6.5 ℃和 20 ℃, 即高温壁 T_h 分别为 32.5 ℃和 46 ℃;气体分别为空 气和氩气,其密度设置采用 Boussinesq 假设,定性 温度 $T_m = \frac{T_h + T_c}{2}$ 。

2.2 不同情况的数值模拟与分析

采用软件 FLUENT 进行数值模拟,由于 FLUENT软件对模拟封闭空腔内自然对流的可行 性以及正确性^[11],利用 FLUENT 的模拟结果,主 要对总热流量 Φ (Total Heat Transfer Rate)和辐射 热流量 Φ , (Radiation Heat Transfer Rate)进行 分析。

利用 GAMBIT 对空气夹层进行网格剖分,采 取非均匀网格节点,壁面处加密;压力插值方案选 择 PRESTO! 格式,压力-速度耦合方程用 SIMPLE 算法,动量、能量方程选用二阶迎风格式。 2.2.1 空气; $T_h = 32.5 \degree$, $T_c = 26 \degree$

为气体热扩散 模拟结果见表 1,其中 q、q_r、q_c分别为单位面积 方问重庆大学期刊社 http://qks.cqu.edu.cn

图1 气体层的物理模型

总热流量、单位面积辐射热流量和单位面积对流热 流量(单位:W/m²),取通过两壁的热流量平均值。

表1 空气夹层 ΔT=6.5℃时的数值模拟结果

δ	H = 800			$H = 1 \ 200$			H = 1 500			
	q	$q_{ m r}$	$q_{ m c}$	q	$q_{ m r}$	$q_{ m c}$	q	$q_{ m r}$	$q_{ m c}$	
6	57.61	28 . 65	28.96	57.63	28.68	28.95	57 . 64	28.69	28.94	
9	48.01	28.66	19 . 35	48.04	28.71	19.33	48.05	28.72	19 . 32	
12	43.19	28.59	14.6	43.08	28.64	14.43	43.98	29 . 44	14.54	
14	41.13	28.49	12.63	41.12	28.57	12.55	41.12	28.59	12.52	
16	39.62	28.41	11.21	39.56	28.47	11.09	39. 55	28 . 51	11.04	

当空气夹层高温壁和低温壁温度一定时,其间 的单位面积辐射热流量不随空气夹层厚度变化,即 辐射换热量可认为是一个常数。由表1可知, q_r 不 随 H 和 δ 发生明显变化。因此,空气夹层的最佳厚 度应该是使 q_c 达到最小时的 δ 。由表1可知,在空 气夹层相同的 δ 条件下,H 对 q_c 的影响微弱, q_c 随 着 H 的增大而缓慢减小。 q_c 的主要影响因素是 δ , 随着 δ 的增大, q_c 大幅减小。在 δ =16 mm 时, q_c 最 小;若以此类推,继续增大 δ 仍能够减小 q_c 。

2.2.2 空气; $T_{\rm h} = 46$ °C, $T_{\rm c} = 26$ °C

模拟结果见表 2,在 $\Delta T = 20 \ \mathbb{C}$ 时, $q_r \ \pi q_c$ 显著 增大,这主要是两壁面温差增大的结果。其中, q_r 随 δ 、H 的变化很小,仍可认为是一常数。与表 1 比较, 随着 δ 的增大, q_r 减幅更大些。 q_c 的变化与表 1 中的 结果一致。不同的是,随着空气夹层 ΔT 的增大, q_c 的变化趋势更明显。主要是因为 ΔT 的增大,空气 夹层内的自然对流增强,由以传导传热变为以对流 传热为主^[12-13]。

表 2 空气夹层 ΔT=20℃时的数值模拟结果

δ	H	I = 80	00	Н	= 1 2	00	H = 1 500			
	q	$q_{ m r}$	$q_{ m c}$	q	$q_{ m r}$	$q_{ m c}$	q	$q_{ m r}$	$q_{ m c}$	
6	186.02	95 . 19	90.83	186.05	95.27	90.78	186.07	95 . 32	90.75	
9	156.06	95 . 12	60.94	156.03	95 . 25	60 . 78	156.01	95 . 3	60.71	
12	141.61	94.96	46.65	141.34	95 . 12	46.22	142.09	96.05	46.04	
14	135.83	94.78	41.05	135.32	95.00	40.32	135.10	95.08	40.02	
16	131.98	94.63	37.34	131.08	94.85	36.22	130.74	94.96	35.79	

模拟结果见表 3,与表 2 比较,在相同的条件 下,q减小;其中q,不再是常数,而是随着δ的增大 逐渐减小,减小的趋势逐渐变缓。这说明,影响q,的 因素包括空气夹层内的气体种类(空气或惰性气体) 和δ。由表2可知,当气体为空气时,δ对辐射换热 影响较小或者认为没有影响,说明空气对热辐射的 吸收率和发射率微弱,完全可以作为透热介质。同 时,氩气夹层内的q。则小于空气夹层内的q。,说明 氩气具有更好的保温隔热效果。

表 3 氩气夹层 ΔT=20℃时的数值模拟结果

0	H=800						
0	q	\mathbf{q}_r	\mathbf{q}_{c}				
6	173.03	116.29	56.73				
9	135.49	97.51	37.99				
12	117.69	88.80	28.89				
14	109.64	84.44	25.20				
16	104.35	81.71	22.64				

说明:氩气采用 T = 20 ℃时的物性参数。

2.3 与按纯导热计算结果比较分析

空气夹层内自然对流换热按纯导热计算的结 果^[14]见表 4。其中, q_{c1} 、 q_{c2} 为按纯导热计算结果, q_{c3} 、 q_{c4} 为数值模拟结果; q_{c1} 、 q_{c3} 为 $\Delta T = 6.5$ ℃时的 对流换热量, q_{c2} 、 q_{c4} 为 $\Delta T = 20$ ℃时的对流换热量。

由表4比较分析,可得出以下3个结论:

j表1中的 1)不论壁面温差 ΔT 大小,在同一 δ 条件下,随 重庆大学期刊社 http://qks.cqu.edu.cn

着 H 的增加,模拟结果与按纯导热计算结果之间的 误差逐渐减小。

2)在空气夹层同一 H 和δ条件下,随着壁面温 差 ΔT 的增大,模拟结果与按纯导热计算结果之间 的误差增大。

3)在冷热壁面温差 $\Delta T = 20 \, \mathbb{C}$,同一 H条件下,随着 δ 的增大,模拟结果的平均值与按纯导热计算结果之间的平均误差逐渐增大。但在 $\Delta T = 6.5 \, \mathbb{C}$ 时,这一特征并不突出。说明温差较大时,随着相对

厚度 δ/H 的增大,夹层内的空气扰动逐渐增强,不 利于保温隔热。

因此,空气夹层内自然对流换热按纯导热计算 的误差取决于空气夹层的高度 H 和空气夹层的厚 度δ,即空气夹层的相对厚度δ/H 以及 ΔT。这说 明空气夹层内自然对流换热的主要影响因素包括瑞 利数 Ra、空气夹层的相对厚度δ/H 和两壁面温差 ΔT。在设定条件下,将中空玻璃空气夹层内自然 对流换热近似按纯导热计算是合理的。

δ	Н	ΔT	\mathbf{q}_{cl}	q_{c3}	$\left[(q_{c3}-q_{c1})/q_{c1}\right]/\%$	ΔT	q_{c2}	q_{c4} /	$[(q_{c4} - q_{c2})/q_{c2}]/\frac{0}{0}$
6	800		28.93	28.96	6 0.112		89.00	90.83	2.058
	1 200			28.95	5 0.069			90.78	1.994
	1 500			28.94	4 0.046			90.75	1.966
9	800		19.28	19.35	5 0.363		59.33	60.94	2.720
	1 200			19.33	3 0.255	20°C		60.78	2.443
	1 500	6.5℃		19.32	2 0.225			60.71	2.320
12	800		14.46	14.60	0.968		44.50	46.65	4.831
	1 200			14.43	3 -0.180			46.22	3.858
	1 500			14.54	4 0.530			46.04	3.461
16	800		10.85	11.21	1 3.341		33.38	37.34	11.870
	1 200			11.09	9 2.227			36.22	8.511
	1 500			11.04	4 1.751			35.79	7.210

表4 空气夹层内的对流换热量计算结果

模拟空气夹层内的温度分布,近似一直线变化, 如图 2;模拟速度矢量分布表明气流运动微弱,没有 出现明显地涡旋运动,如图 3。这都很好地说明了中 空玻璃空气夹层自然对流换热可以近似作为纯导热 处理。

图 2 空气夹层内不同断面静态温度变化图

				- T	4	V King
_	8.80e-02				#	
	8.36e-02				\$	
	7.92e-02				\$	
	7.48e-02		社 紀不		Ť	
	7.04e-02				Ť	
	6.60e-02		化林相	1	#	
	6.160-02				Ť	
	5.72-02				#	
	5.72e-02			4	Ŧ	XXX
	5.28e-02			1	¥	<u>VXX</u>
	4.84e-02				Ť	
	4.40e-02				Ť	
	3.96e-02			4	Ť	
	3.52e-02			1	Ť	
	3.08e-02				Ŧ	
	3.600 02			÷ 4	Ŧ	Y Y Y Y
	2.64e-02			1	Ť	XXX.
	2.20e-02				₽	
	1.76e-02				\$	
	1.32e-02				¥	
	8.81e-03				Ť	
	4.41e-03			1	Ť	
	1.040-05				Ť	
	1.046-05		HARA	£ 1	Ť	

图 3 空气夹层内局部放大速度矢量分布图

2.4 空气夹层内的压力变化
 空气夹层高温壁的压力分布如图 4、5。当△T=

6.5℃时,高、低温壁压力分布刚好相反,高温壁压力 绝对值沿壁面高度方向直线增大,低温壁静压力绝 对值则直线减小。这说明夹层内的气体压力沿高度 方向分布比较均匀,不会出现空气夹层变形的现象。 当ΔT = 20℃时,高、低温壁压力分布相同,靠近底部 和顶部压力变化很大,而靠近中间压力保持恒定。 这说明夹层内气体压力不均匀。可见,空气夹层的 温度对气体密度有影响,从而会影响夹层内压力的 变化,出现空腔变形,尤其是空气夹层面积较大、厚 度较大的情况下,此现象更加突出。

图 4 ΔT=6.5℃, H=800 mm 高温壁压力变化图

图 5 ΔT=20℃, H=800 mm 高温壁压力变化

3 中空玻璃传热系数 K 计算比较

利用模拟获得的总热流量 Φ,可求得中空玻璃 的传热系数 K 值。与上述经验公式计算,比较结果 见表 5。其中总热流量 Φ 取其 3 个不同 H 模拟结果 的平均值。

由表 5 发现,随着 δ 增大,中空玻璃传热系数 K值逐渐减小,这与对流换热量的变化趋势一致。而 随着温差的增大,同一 δ 的中空玻璃传热系数 K 值 也增大,这与工程上推荐的空气层热阻与室内外温 差无关显然是矛盾的。由表 5 可知,利用模拟结果 计算的 K 值大于按经验公式的计算值。该模拟结果 与中空玻璃热工计算的成熟软件的计算结果相当 接近^[15]。

表5 中空玻璃传热系数K计算结果 W/(m²·K)

中空玻 璃形式	按经验公式 计算 K 值	65℃时模 拟 <i>K</i> 值	20℃时模 拟 <i>K</i> 值
3+6A+3	3.13	3.28	3.34
3 + 9A + 3	2.89	3.06	3.12
3+12A+3	2.74	2.93	3.00
3 + 14A + 3	2.67	2.86	2.94
3+16A+3	2.63	2.81	2.90

4 结 论

对中空玻璃空气夹层内自然对流换热进行了计 算。采用纯导热过程计算的结果与 FLUENT 数值 模拟的结果存在微小差异。分析结果表明,影响空 气夹层内自然对流换热的主要因素包括气体种类、 瑞利数 Ra、空气夹层的相对厚度 δ/H 和壁面温差 ΔT ,即传热温差。

由于空气的导热系数很小,按纯导热计算时具 有最大的热阻。但由于相对厚度 δ/H 和传热温差 ΔT 对空气夹层内自然对流状态具有较大的影响,当 δ/H 和 ΔT 增大时,空气夹层内的气体将产生明显 的扰动而难以维持纯导热状态,从而增强了对流换 热,使中空玻璃传热系数K值增大,对保温隔热产生 不利的影响。在夏热冬冷地区,夏季空调能耗占全 年能耗的比例最大,由于各地区太阳辐射强度存在 明显的差异,导致传热温差不同。因此,采用不同相 对厚度 δ/H 的中空玻璃将有利于各地区的建筑 节能。

由于空气夹层的高、低温壁面采用恒温条件,以 及模拟的δ范围在16 mm以内,没有寻找到中空玻 璃空气夹层的最佳厚度。同时,单从理论与模拟角 度出发,缺乏实验结果的验证,也是的遗憾之一。因 此,下一步工作将在此基础上,增大空气夹层δ范围 研究中空玻璃空气夹层内的自然对流换热,进一步 对瑞利数 Ra、相对厚度δ/H 以及恒壁温条件进行 理论分析,通过模拟与实验相结合的方法获得中空 玻璃空气夹层的最佳理论厚度。

欢迎访问重庆大学期刊社 http://qks.cqu.edu.cn

参考文献:

[1]张弘,贺炬.夏热冬冷地区窗户节能措施[J].住宅科技, 2007(4):14-15.

ZHANG HONG, HE JU. Hot-summer & cold-winter area window energy conservation measure [J]. Housing Science, 2007(4):14-15.

- [2]马杨,杨仕超,吴培浩.中空玻璃的热工性能研究[C]//
 2007全国建筑环境与建筑节能学术会议,2007年10月25-26日,成都,中国.[S.1]:中国建筑学会建筑物理分会,2007:233-240.
- [3] GIRGIS I G. Numerical and experimental investigations of natural convection in inclined air enclosures [J]. Journal of American Institute of Aeronautics and Astronautics, 2000(1):10-13
- [4] AYDIN O. Conjugate heat transfer analysis of double pane windows [J]. Energy and Buildings, 2006,41(2): 109-116.
- [5] ISMAIL K A R, SALINAS C S. Application of multidimensional scheme and the discrete ordinate method to radiative heat transfer in a two-dimensional enclosure with diffusely emitting and reflecting boundary walls [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 88 (4): 407-422.
- [6] ISMAIL K A R, SALINAS C S, HENRIQUEZ J R. Comparison between PCM filled glass windows and absorbing gas filled windows [J]. Energy and Buildings,2008 40 (5): 710-719.
- [7] PRADITSMANONT A, CHUNGPAINBULPATANA
 S. Performance analysis of the building envelope: a case study of the Main Hall, Shinawatra University [J].
 Energy and Buildings, 2008, 40(9): 1737-1746.
- [8] OELHAFEN P. Optimized spectral transmittance of sun protection glasses [J]. Solar Energy, 2007, 81(9): 1191-1195.
- [9] HUANG H, DUNCAN C, ABATE K. Energy

efficient insulated glass unit [J]. Patent Application Publication, 2008(5): 1-7.

- [10] 罗忆,黄圻,刘忠伟.建筑幕墙设计与施工[M].北京:化 学工业出版社,2007.
- [11] 李世武,熊莉芳.封闭方腔自然对流换热的研究[J].工业加热,2007,36(3):10-13.
 LI SHI-WU, XIONG LI-FANG. Study of natural convection in a closed square cavity [J]. Industrial Heating, 2007, 36(3):10-13.
- [12] 杨仕超.中空玻璃光学及热工性能的计算[J].广东土木 与建筑,2002,1(1):37-41.
 YANG SHI-CHAO. Hollow glass optical and thermal performance calculation [J]. Guangdong Architecture Civil Engineering,2002,1(1):37-41.
- [13] 童树庭,冯晓云.中空玻璃的传热特性及其影响因素[J].建筑材料学报,2004,7(1):52-57.
 TONG SHU-TING, FENG XIAO-YUN. Thermal performance of insulating glass and its influencing factors [J]. Journal of Building Materials,2004,7(1): 52-57.
- [14] 董子忠,许永光,陈启高,等. 窗户传热系数的简化计算 方法[J]. 保温材料与建筑节能,2002(9):40-44.
 DONG ZI-ZHONG, XU YONG-GUANG CHEN QI-GAO, et al. Heat transfer coefficient of windows to simplify calculations [J]. Insulation Materials and Building Energy Saving,2002(9):40-44.
- [15] 孟庆林,蔡宁,陈启高.封闭空气层热阻的理论解[J].华 南理工大学学报:自然科学版,1997,25(4):116-119. MENG QING-LING, CAI YU, CHEN QI-GAO. A theoretical solution on the thermal resistance of sealed air layer [J]. Journal of South China University of Technology: Natural Science Edition, 1997, 25(4): 116-119.

(编辑 赵 静)