文章编号:1000-582X(2010)01-0019-06

燃气轮机齿轮耦合转子系统的动力学特性

秦大同,钱 恩,石万凯

(重庆大学 机械传动国家重点实验室,重庆 400044)

摘 要:在考虑滑动轴承的基础上,利用传递矩阵法分别建立了两单轴转子的弯曲振动分析模型,推导了人字齿轮耦合单元的传递矩阵,应用整体传递矩阵法建立了人字齿轮转子系统的弯扭耦 合振动分析模型,对某燃气轮机齿轮-转子-轴承系统进行了振动特性分析。通过数值计算与分析, 获得齿轮转子系统的特征值、对数衰减率及临界转速。结果表明该齿轮-转子-轴承系统的工作转 速远离临界转速,具有工作的稳定性和安全性。

Dynamic characteristics research of gear coupling rotor system in gas turbine

QIN Da-tong, QIAN En, SHI Wan-kai

(State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, P. R. China)

Abstract: Taking the sliding bearing into account, the lateral vibration analysis models of two single rotor were built respectively using the transfer matrix method. The transmission matrix of herringbone gear-coupled unit is derived. Using whole transfer matrix method, the lateral-torsional coupling analysis model of herringbone gear-rotor system is set up, and the vibration characteristics of gear-rotor-bearing system in gas turbine is analyzed. Through numerical calculation and anlysis, the eigenvalue of gear-rotor system, the Logarithmic decrement and the critical speed are obtained. The result shows that the working speed of this gear-rotor-bearing system is far away from the critical speed, therefore the system is stable and safe. **Key words**: rotors; bending-torsional coupling; critical speed; herringbone gears; transfer matrix method

现代工业的飞速发展使得齿轮传动系统朝着高 转速、大功率的趋势发展,同时也使自身的结构越来 越复杂,如燃气轮机齿轮转子系统、直升机主旋翼传 动系统等,都属于齿轮耦合复杂转子系统。由于齿 轮的啮合作用,这类转子系统的振动特性与简单转 子系统有着根本的区别,既会引起系统的弯曲振动, 也会引起系统的扭转振动,两者结合在一起,产生弯 扭耦合振动。对于此类系统的振动问题,必须考虑 耦合振动的影响,否则会使结果失真,而且会丢失一 些固有频率,使理论计算和实测值存在较大差异。

迄今为止,国内外学者对齿轮耦合转子系统进 行了较为深入的研究。欧卫林等^[1]采用轴单元法研 究了齿轮耦合转子系统的弯扭耦合振动;Hsieh 等^[2-3]采用修正传递矩阵法分别研究了对称和非对 称转子轴承系统的弯扭耦合振动;苏武会等^[4]采用 整体传递矩阵法进行了斜齿轮转子系统的弯扭耦合

收稿日期:2009-08-18

基金项目:国家科技支撑计划项目(2006BAF01B07-01)

作者简介:秦大同(1956-),男,重庆大学教授,博士生导师,主要从事机械传动系统方向的研究,(Tel)023-65104217; (E-mail)dtqin@cqu.edu.cn。

振动分析;Lee 等^[5]分析了齿轮耦合的两轴转子轴 承系统的最大不平衡响应;Zhang 等^[6]计算分析了 涡轮发电机轴系的扭转振动;庞辉等^[7]研究了多平 行齿轮耦合转子系统的振动特性。笔者结合企业设 计开发的燃气轮机齿轮箱齿轮耦合转子系统进行动 力学特性分析,计算了齿轮啮合刚度和啮合阻尼,研 究得到了滑动轴承的相关参数,采用整体传递矩阵 法,建立了齿轮耦合单元的传递矩阵,利用数值计算 方法,求得转子系统的特征值,得到了转子临界转速 及衰减系数,对分析评价高速、重载齿轮转子系统的 稳定性,提高燃气轮机的安全性及使用寿命有指导 意义。

1 系统建模

所研究的燃气轮机齿轮转子系统如图1所示。

图1 齿轮传动系统结构示意图

该系统由单级平行轴人字齿轮构成。在一般的 分析中,通常把齿轮视为刚体,笔者将齿轮简化处理 为弹簧阻尼系统,用平均啮合刚度 k 来代替齿轮的 时变啮合刚度。

单对齿刚度 c'定义为

 $c'=1/q=1/(0.047\ 23+0.155\ 1/z_{v1}+0.257\ 91/z_{v2}-0.006\ 35x_{n1}-0.001\ 93x_{n2}-0.116\ 54x_{n1}/z_{v1}-0.241\ 88x_{n2}/z_{v2})(N/(mm\cdot\mu m)),$

式中:q为齿轮的柔度; z_{v1} 、 z_{v2} 分别为主动轮和从动轮的当量齿数; x_{n1} 、 x_{n2} 分别为主动轮和从动轮的法面变位系数。

齿轮综合啮合刚度

$$c_{\rm r} = (0.75\varepsilon_{\rm a} + 0.25)c'(\rm N/(\rm mm \cdot \mu \rm m)),$$

式中 ɛ a 为齿轮的端面重合度。

平均啮合刚度

$$k = c_{\rm r} b \times 10^6 \,({\rm N/m})\,,\tag{1}$$

式中 b 为齿轮副的齿宽。

而齿轮传动阻尼系数的计算公式为

$$c = 2\zeta \sqrt{\frac{k}{(1/m_1 + 1/m_2)}} (N \cdot s/m),$$
 (2)

式中:*m*₁、*m*₂ 分别为主动轮和从动轮的等效质量;*k* 为齿轮的啮合刚度; *ζ* 为阻尼比, 一般取值为 0.03~ 0.10, 此处取值 0.05。

人字齿轮传动力学模型见图 2。

图 2 人字齿轮耦合单元线性力耦合模型

假定:1)齿轮传动重合度大,啮合刚度和阻尼为 常值;2)不考虑啮合齿间隙、啮合线位置的变化;3) 啮合力为集中力,作用点在齿宽中点。根据图 3,可 得齿轮啮合力的表达式为

$$F_{ij} = K_{s} \lfloor (x_{i} - x_{j}) \sin \alpha_{n} + (y_{i} - y_{j}) \cos \beta \cos \alpha_{n} + (r_{bi}\theta_{i} + r_{bj}\theta_{j}) \cos \beta_{b} + (r_{xi}\psi_{i} + r_{xj}\psi_{j}) \sin \beta_{b} + (-r_{yi}\varphi_{i} - r_{yj}\varphi_{j}) \sin \beta_{b} \rfloor, \qquad (3)$$

式中:i、j分别代表主动轴和从动轴; K_s 为组合刚 度, $K_s = k + c_{ij}S$,其中k为啮合刚度项; $c_{ij}S$ 为啮合 阻尼项; r_b 为基圆半径; a_n 为法向压力角; a_t 为端面 压力角; $r_x = r_b \cos a_t$, $r_y = r_b \sin a_t$; β 为分度圆柱螺旋 角; β_b 为基圆柱螺旋角。

图 3 人字齿轮因振动产生的位移

根据齿轮受力,将啮合力 *F*_{ij}向 *x*、*y*、*z* 3 个方向 投影得

$$\begin{cases} F_{xi} = -F_{ij} \sin \alpha_{n}, \\ F_{yi} = -F_{ij} \cos \alpha_{n} \cos \beta, \\ F_{zi} = -F_{ij} \cos \alpha_{n} \sin \beta, \end{cases} \begin{cases} F_{xj} = -F_{ij} \sin \alpha_{n}, \\ F_{yj} = -F_{ij} \cos \alpha_{n} \cos \beta, \\ F_{zj} = -F_{ij} \cos \alpha_{n} \sin \beta. \end{cases}$$

按传递矩阵理论可导出齿轮 i、j 啮合处右端状态参数与左端状态参数之间的关系式。经过啮合点后2根轴的状态参数便耦合在一起,写成矩阵形式

$$T = \begin{bmatrix} E & T_{12} & 0 & T_{14} \\ 0 & E & 0 & 0 \\ 0 & T_{32} & 0 & T_{34} \\ 0 & 0 & 0 & E \end{bmatrix}$$

式中:

$$\mathbf{T}_{12} = \begin{bmatrix} 0 & J_{db}\beta^2 & 0 & J_{\mu}\omega\beta & 0 \\ m_{ij}\beta^2 - K_{*}a_{1}^{2} & K_{*}a_{1}a_{3}a_{7}r_{bi} & -K_{*}a_{1}a_{2}a_{6} & -K_{*}a_{1}a_{3}a_{8}r_{bi} & K_{*}a_{1}a_{4}r_{bi} \\ \frac{K_{*}a_{1}a_{2}a_{2}r_{1a}}{a_{8}} & -J_{\mu}\omega\beta - \frac{K_{*}a_{2}a_{3}a_{5}a_{7}r_{bi}^{2}}{a_{8}} & \frac{K_{*}a_{2}^{2}a_{2}a_{4}a_{7}a_{ii}}{a_{8}} & J_{di}\beta^{2} + \frac{K_{*}a_{2}a_{3}a_{3}a_{3}a_{3}a_{8}r_{bi}}{a_{8}} & \frac{K_{*}a_{2}a_{4}a_{4}a_{7}r_{bi}^{2}}{a_{8}} \\ -K_{*}a_{1}a_{2}a_{6} & K_{*}a_{2}a_{3}a_{6}a_{7}r_{bi} & -K_{*}a_{2}^{2}a_{5}a_{6} & -K_{*}a_{2}a_{3}a_{6}a_{8}r_{bi} & -K_{*}a_{2}a_{4}a_{6}r_{bi} \\ -K_{*}a_{1}r_{bi} & K_{*}a_{3}a_{7}r_{bi}^{2} & -K_{*}a_{2}a_{3}r_{bi} & -K_{*}a_{2}a_{3}a_{6}a_{8}r_{bi} & -K_{*}a_{2}a_{4}a_{6}r_{bi} \\ -K_{*}a_{1}a_{1}a_{2}a_{6} & K_{*}a_{2}a_{3}a_{5}a_{7}r_{bi} & K_{*}a_{2}a_{3}a_{5}a_{7}r_{bi} \\ -\frac{K_{*}a_{1}a_{2}a_{5}r_{bi}}{a_{8}} & -\frac{K_{*}a_{2}a_{3}a_{5}a_{7}r_{bi}}{a_{8}} & -\frac{K_{*}a_{2}a_{3}a_{5}a_{7}}{a_{8}} & \frac{K_{*}a_{2}a_{3}a_{5}a_{8}r_{bi}}{a_{8}} \\ -\frac{K_{*}a_{1}a_{2}a_{5}r_{bi}}{a_{8}} & -\frac{K_{*}a_{2}a_{3}a_{5}a_{7}r_{bi}}{a_{8}} & -\frac{K_{*}a_{2}^{2}a_{5}a_{6}}{a_{8}} & -K_{*}a_{2}a_{3}a_{5}a_{8}r_{bi} \\ K_{*}a_{1}r_{bi} & K_{*}a_{2}a_{3}a_{5}a_{7}r_{bi}} & K_{*}a_{2}a_{3}a_{5}a_{7}r_{bi}} \\ K_{*}a_{1}a_{2}a_{6} & K_{*}a_{2}a_{3}a_{5}a_{7}r_{bi}} & K_{*}a_{2}a_{5}a_{6} & -K_{*}a_{2}a_{3}a_{5}a_{8}r_{bi} \\ -K_{*}a_{1}a_{2}a_{5}r_{bi} & K_{*}a_{1}a_{3}a_{7}r_{bi}} & K_{*}a_{2}a_{3}a_{5}a_{7}r_{bi}} \\ K_{*}a_{1}a_{2}a_{6} & -K_{*}a_{2}a_{3}a_{5}a_{7}r_{bi}} & K_{*}a_{2}a_{3}a_{5}a_{7}r_{bi} \\ -K_{*}a_{1}a_{2}a_{5}r_{bi}} & \frac{K_{*}a_{2}a_{3}a_{5}a_{7}r_{bi}r_{bi}}{a_{8}}} & -\frac{K_{*}a_{2}^{2}a_{2}a_{6}}{a_{8}}} & -K_{*}a_{2}a_{3}a_{5}a_{7}r_{bi}} \\ K_{*}a_{1}a_{2}a_{6} & -K_{*}a_{2}a_{3}a_{6}a_{7}r_{bi}} & K_{*}a_{1}a_{1}r_{bi} \\ -K_{*}a_{1}a_{2}a_{5}r_{bi}r_{bi}} & -K_{*}a_{2}a_{3}a_{6}a_{7}r_{bi}} & K_{*}a_{1}a_{1}r_{bi} \\ -K_{*}a_{1}a_{2}a_{5}r_{bi}r_{bi}} & -K_{*}a_{2}a_{3}a_{5}a_{5}r_{bi} \\ -K_{*}a_{1}a_{2}a_{5}r_{bi}r_{bi} & -K_{*}a_{2}a_{3}a_{5}a_{7}r_{bi} \\ -K_{*}a_{1}a$$

 $\underbrace{\sharp \, \psi}_{a_1} = \sin \alpha_n; a_2 = \cos \alpha_n; a_3 = \sin \beta_b; a_4 = \cos \beta_b; \\ a_5 = \sin \beta; a_6 = \cos \beta; a_7 = \sin \alpha_t; a_8 = \cos \alpha_t \, \circ$

在燃气轮机齿轮转子系统弯扭耦合振动分析的 整体传递矩阵法^[4]中,单轴的截面状态参数共有 10个[M_x , Q_x , M_y , Q_y ,T,x, θ_x ,y, θ_y , φ]^T,其中包括 5个广义力和5个广义位移。2个相互啮合的齿轮 将2根轴的状态向量耦合起来,于是这2个相互啮 合的齿轮构成了一个齿轮耦合单元,该单元的状态 向量为

$$\boldsymbol{Z} = \begin{bmatrix} \boldsymbol{Z}_{i} & \boldsymbol{Z}_{j} \end{bmatrix} = \begin{cases} M_{xi}, Q_{xi}, M_{yi}, Q_{yi}, T_{i}, x_{i}, \theta_{xi}, \\ y_{i}, \theta_{yi}, \varphi_{i}, M_{xj}, Q_{xj}, M_{yj}, Q_{yj}, \\ T_{j}, x_{j}, \theta_{xj}, y_{j}, \theta_{yj}, \varphi_{j} \end{cases}^{\mathrm{T}}$$

在齿轮啮合点左右两端的截面状态参数的关系如下: $Z_{R} = T \cdot Z_{L}$ 。根据传递矩阵法可得 $Z = T_{1}T_{2}$ …

 $T_{n}Z_{0}$,然后根据边界条件,可求得系统的各阶临界转速。

2 算 例

2.1 计算参数

采用 TLBI-1 滑动轴承性能计算软件包,根据 转子轴承系统各项参数:轴承宽径比(B/d)高速轴 为 0.958、低速轴为 0.820,轴承椭圆度均为 0.5,轴 承直径 $d_1 = 0.24 \text{ m}$ 、 $d_2 = 0.28 \text{ m}$,轴承错位角均相 同,分别为 90°和 270°,轴承间隙比均为 0.001 5,工 作转速 $n_1 = 5$ 163 r/min,从而得到滑动轴承的线性 交叉动力系数。

高速左径向错位瓦滑动轴承动力系数为 $k_{xx} = 2.702 \times 10^9 \text{ N/m}, k_{yy} = 6.733 \times 10^9 \text{ N/m},$ $k_{xy} = 5.113 \times 10^8 \text{ N/m}, k_{yx} = 5.814 \times 10^9 \text{ N/m},$ $c_{xx} = 4\ 008\ 441\ \text{N} \cdot \text{s/m}, c_{yy} = 1.944 \times 10^7\ \text{N} \cdot \text{s/m},$ $c_{xy} = c_{yx} = 56\ 555\ 700\ \text{N} \cdot \text{s/m}.$

高速右径向错位瓦滑动轴承动力系数为 $k_{xx} = 4.381 \times 10^9 \text{ N/m}, k_{yy} = 7.218 \times 10^9 \text{ N/m},$ $k_{xy} = 3.191 \times 10^8 \text{ N/m}, k_{yx} = 8.212 \times 10^9 \text{ N/m},$ $c_{xx} = 7\ 460\ 617\ \text{N} \cdot \text{s/m}, c_{yy} = 2.598 \times 10^7\ \text{N} \cdot \text{s/m},$ $c_{xy} = c_{yx} = 8\ 768\ 235\ \text{N} \cdot \text{s/m}.$

低速左径向错位瓦滑动轴承动力系数为 $k_{xx} = 2.312 \times 10^9 \text{ N/m}, k_{yy} = 6.290 \times 10^9 \text{ N/m}, k_{xy} = 4.563 \times 10^8 \text{ N/m}, k_{yx} = 5.124 \times 10^9 \text{ N/m}, c_{xx} = 5.934 402 \text{ N} \cdot \text{s/m}, c_{yy} = 2.937 \times 10^7 \text{ N} \cdot \text{s/m}, c_{xy} = c_{yx} = 8.749 048 \text{ N} \cdot \text{s/m}.$

低速右径向错位瓦滑动轴承动力系数和左侧一致。 图 1 所示的齿轮传动系统,齿轮参数如下:模数 $m_n = 10$,螺旋角 $\beta = 26^{\circ}45'$,压力角 $\alpha_n = 20^{\circ}$,齿轮宽 度 $b_1 = b_2 = 700$ mm,齿轮齿数高速轴 $z_1 = 43$,低速 轴 $z_2 = 74$ 。采用集总参数法将燃气轮机齿轮转子系 统进行离散化处理,结果如图 1 所示。然后分别计 算各节点处的质量及转动惯量。高速轴:轴长 $l_1 =$ 169.30 mm,齿轮质量 $m_1 = 1$ 150 kg,极转动惯量 $J_{P_1} = 35.62$ kg·m²;低速轴: $l_2 = 175.63$ mm, $m_2 =$ 2 930 kg, $J_{P_2} = 246.97$ kg·m²;左、右端圆盘质量及 极转动惯量:主动轴左端圆盘质量 250 kg,极转动惯 量 5.13 kg·m²;右端圆盘质量为 200 kg,极转动惯 量为 5.48 kg·m²;人动轴左端圆盘质量为 400 kg, 极转动惯量为 10.16 kg·m²;右端圆盘质量为 350 kg,极转动惯量为 9.24 kg·m²。

根据公式(1)(2)及齿轮参数得齿轮平均啮合刚 度 $k=1.6355 \times 10^{10}$ N/m;啮合阻尼 $c=3.6752 \times 10^{5}$ N•s/m。

2.2 临界转速和对数衰减率

利用前述的传递矩阵法,求解各单轴转子及耦 合转子系统在各个转速下的前10阶特征值。限于 篇幅,表1、2分别只列出5种转速下单轴转子的前 10阶特征值。

表1 不同转速下高速轴系统特征值($S = \lambda + i\Omega$)

12公米47	$n/(r \cdot \min^{-1})$									
DI XX	300	1 000	2 000	5 000	10 000					
1	-5+10i	-5+10i	-5+10i	-5+10i	-5+10i					
2	-10+1 020i	-10+1 020i	$-10+1 \ 010i$	-20+960i	-20+710i					
3	-30+1 880i	-80 + 1 830i	$-80\!+\!1$ 670 <i>i</i>	-50+1 050i	$-70\!+\!1\ 100i$					
4	$-290\!+\!1890i$	-230+1 940 i	-220+2 090i	-160+2 000i	$-480\!+\!1$ 150 <i>i</i>					
5	-80+3 920i	-770+3 830i	-820+3 400 <i>i</i>	-790+2 630i	$-700 \pm 2 400i$					
6	-640+3 990 <i>i</i>	-320 + 4 140 <i>i</i>	-400+4 420 <i>i</i>	-570+5 560 <i>i</i>	-940 + 7 680i					
7	-210+4 450 <i>i</i>	-160+5 930i	-120+7 260 <i>i</i>	$-40\!+\!12\ 000i$	$-160 + 13 \ 200i$					
8	-130+18970i	$-170\!+\!18\ 160i$	$-190\!+\!18\ 020i$	$-210\!+\!17580i$	$-320\!+\!16$ 490 <i>i</i>					
9	$-50+19\ 660i$	-450+19 010i	$-830\!+\!18350i$	$-1 \ 140 + 16 \ 300 i$	$-1 \ 410 + 13 \ 660i$					
10	-1 720 + 20 440i	-1 450 + 20 660i	$-1 \ 070 + 21 \ 520i$	-580 + 24 600i	-330 + 30740i					

表 2 不同转速下低速轴系统特征值(S=λ+iΩ)

I 公 米4	$n/(r \cdot min^{-1})$									
PJ XX	300	1 000	2 000	5 000	10 000					
1	-310+250i	-290+280i	-250+310i	-100+330i	-320+270i					
2	-120+1 210i	-120+1 200i	-130+1 180 <i>i</i>	-110+1 060i	-200+1 020i					
3	-110+1 360i	-110+1 400i	$-270\!+\!1$ 440 <i>i</i>	$-240\!+\!1$ 170 <i>i</i>	-190+1 350i					
4	-110+1 360i	$-880 \pm 1 \ 050i$	-930 + 980i	$-260\!+\!1$ 250 <i>i</i>	$-230\!+\!1$ 690 <i>i</i>					
5	$-450+6\ 270i$	-460+6 290 <i>i</i>	-520+6 $450i$	-640+5 $660i$	$-1 \ 060 + 4 \ 790i$					
6	$-140+10\ 970i$	-230+9 430 <i>i</i>	-280 + 8 650i	$-400+6\ 870i$	-660+5 270i					
7	$-140+10\ 030i$	$-180\!+\!11\ 280i$	$-380\!+\!11\ 050i$	$-720\!+\!11\ 190i$	-1 560 + 11 340i					
8	-260+10580i	$-400 + 10\ 980i$	-140+12 370 <i>i</i>	$-70 + 16 \ 230i$	$-460\!+\!15500i$					
9	$-320\!+\!18\ 600i$	-520+18570i	$-1 \ 110 + 18 \ 290i$	-2 540 + 16 650i	$-110+20\ 660i$					
10	-2 440 + 20 630i	-2 270 + 20 710i	$-1\ 740 + 21\ 180i$	-860 + 24 130i	-340+30 420 <i>i</i>					

假设取前 10 阶特征值,将各个转速下的复特征 值(λ +*i*Ω)收集起来,可作出如图 4、5 所示的曲线, 图中转子转速 *n* 为横坐标,固有频率 Ω 为纵坐标,曲 线表达了涡动角速度随自转角速度变化的规律,如

图4 各阶转速下高速轴固有频率

令 $\Omega = n$,就可以找出转子的临界转速值,同样方法可找出对应转子临界转速的对数衰减率值($\delta = -2\pi\lambda/\Omega$),如表3所示。

图5 各阶转速下低速轴固有频率

表	3	燃气车	论机:	齿轮	转子	系	统的	临界	4转速	及木	日应	的	对数	衰波	充率
---	---	-----	-----	----	----	---	----	----	-----	----	----	---	----	----	----

阶数			*	老市人与告於细人							
	高速轴				低速轴		- ^9	考虑八子囚北枘官			
	λ	临界转速 /(r•min ⁻¹)	δ	λ	临界转速 /(r•min ⁻¹)	δ	λ	临界转速 /(r•min ⁻¹)	δ		
1	-5	10	3.145	-310	250	7.791	-5	10	3.142		
2	-10	1 020	0.062	-320	270	7.447	-32	850	0.188		
3	-70	1 230	0.358	-120	1 200	0.628	-68	1 410	0.303		
4	- 90	1 710	0.311	-150	1 470	0.641	- 80	1 660	0.303		
5	-220	2 100	0.658	-880	1 050	5.266	-200	1 960	0.641		
6	-830	3 040	1.715	-710	5 580	0.799	-670	2 960	1.422		
7	-320	4 030	0.499	-450	6 330	0.447	-280	4 000	0.440		
8	-640	5 980	0.672	-1 250	11 250	0.698	-460	6 080	0.475		
9	-1 520	12 310	0.776	-5 410	15 870	2.142	-1 250	11 250	0.698		
10	-2 130	31 980	0.418	-2870	46 530	0.388	-5 410	15 870	2.142		
11							-2 130	31 980	0.418		
12							-2870	46 530	0.388		

采用整体传递矩阵法对两平行轴齿轮耦合转子 系统进行建模及数值计算,各转子非耦合单元的传 递矩阵仅与单转子状态向量有关,齿轮耦合单元传 递矩阵如前面所述,即可得到整体传递矩阵方程,代 入整体边界条件进行求解,得到两平行轴齿轮耦合 转子系统的特征值。类同单轴转子推导方法即可得 齿轮耦合转子系统临界转速及其对数衰减率值如 表3所示。 表 3 列出了各单跨转子及齿轮耦合转子系统的 临界转速及对数衰减率的值,从表中可以看出:1)各 阶临界转速偏离工作转速较远,系统不会有共振发 生,因此齿轮转子系统设计是合理的;2)由于齿轮的 啮合作用,使得转子发生弯扭耦合振动,振动特性发 生了改变,耦合后转子系统的临界转速降低而且分 布更密,所以对工作转速的选择要求更谨慎;3)转子 系统耦合后的对数衰减率相对未耦合时要小,对数 衰减系数越小,转子系统越不稳定,可见弯扭耦合将 使系统的稳定性下降。

3 结 语

1)采用整体传递矩阵法对齿轮耦合滑动轴承支 承的复杂转子系统进行了动力学建模,建立了齿轮 转子弯扭耦合振动分析模型。

2)由于齿轮耦合的作用,两平行轴人字齿轮转 子系统中除了有单轴的固有频率及与单轴固有频率 相近的固有频率外,还产生了许多新的固有频率,使 得临界转速分布更密,所以,应当小心选择工作转 速,以避开系统的共振区。

3)所研究的燃气轮机齿轮转子系统的实际工作 转速避开了其临界转速,转子系统是稳定的,因此所 设计的齿轮转子系统及所选的滑动轴承是合理的。

参考文献:

[1] 欧卫林,王三民,袁茹.齿轮耦合复杂转子系统弯扭耦 合振动分析的轴单元法[J].航空动力学报,2005,20 (3):434-439.

OU WEI-LIN, WANG WAN-MIN, YUAN RU. Shaft element method for the analysis of lateral-torsional coupling vibration of a complex gear-rotor system[J]. Journal of Aerospace Power, 2005,20(3):434-439.

- [2] HSIEH S C, CHEN J H, LEE A. A modified transfer matrix method for the coupled lateral and torsional vibrations of symmetric rotor-bearing systems [J]. Journal of Sound and Vibration, 2006, 289 (1/2): 294-333.
- [3] HSIEH S C, CHEN J H, LEE A C. A modified transfer matrix method for the coupled lateral and torsional vibrations of asymmetric rotor-bearing systems[J]. Journal of Sound and Vibration, 2008,312 (4/5):563-571.
- [4]苏武会,李育锡. 斜齿轮转子系统弯扭耦合振动分析的 整体传递矩阵法[J]. 机床和液压,2007,35(6):38-41. SU WU-HUI, LI YU-XI. Whole transmission matrix method for coupled bending-torsional vibration analysis of helical geared system [J]. Machine Tool and Hydraulics, 2007,35(6):38-41.
- [5] LEE A S, HA J W. Prediction of maximum unbalance responses of a gear-coupled two shaft rotor-bearing system[J]. Journal of Sound and Vibration, 2005,283 (3/5):507-523.
- [6] ZHANG Z, DU D M, HE Q. Response calculation and analyses of torsional vibration of turbine-generator shafts [C] // Proceeding of 2006 ASME Power

Conference, May 2-4, 2006, Atlanta, Georgia, USA. [S. l.]: IEEE, 2006: 311-333.

- [7] 庞辉,方宗德,欧卫林. 多平行齿轮耦合转子系统的振 动特性分析[J]. 振动与冲击,2007,26(6):21-25. PANG HUI, FANG ZONG-DE, OU WEI-LIN. Analysis on lateral-torsional coupling vribraton characteristics of multi-parallel gear-rotor system[J]. Journal of Vibration and Shock, 2007,26(6):21-25.
- [8] MAHARATHI B B. Dynamic behaviour analysis of linear rotor-bearing systems using the complex transfer matrix technique[J]. International Journal of Acoustics and Vibrations, 2005, 10(3):413-417.
- [9] 宋雪萍,于涛,李国平,等. 齿轮轴系弯扭耦合振动特 性[J]. 东北大学学报:自然科学版,2005,26(10): 990-993. SONG XUE-PING, YU TAO, LI GUO-PING, et al.

Characteristics of bending-torsional coupled vibrations of gear[J]. Journal of Northeastern University: Natural Science, 2005,26(10):990-993.

- [10] JUN O S, GADALA M S. Dynamic behavior analysis of cracked rotor[J]. Journal of Sound and Vibration, 2008, 309(1/2):210-245.
- [11] SU J C T, LIE K N. Rotor dynamic instability analysis on hybrid air journal bearings [J]. Tribology International, 2006,39(3):238-248.
- [12] 柴山,高连勇. 多转子系统弯扭耦合振动分析的整体传 递矩阵法[J]. 机械设计,2005,22(10): 8-10.
 CAI SHAN, GAO LIAN-YONG. Whole transmission matrix method for coupled bending-torsional vibration analysis of multi-rotor system[J]. Journal of Machine Design, 2005,22(10): 8-10.
- [13] 宋雪萍,刘树英,闻邦椿.齿轮-转子系统的振动特性分析[J]. 机械科学与技术,2006,25(2):153-157.
 SONG XUE-PING, LIU SHU-YING, WEN BANG-CHUN. Vibration characteristics analysis of a gear rotor system[J]. Mechanical Science and Technology, 2006,25(2):153-157.
- [14] 秦大同,刑子坤,王建宏,等. 基于动力学的风力发电齿 轮传动系统可靠性评估[J]. 重庆大学学报:自然科学 版,2007,30(12):1-6.
 QIN DA-TONG, XING ZI-KUN, WANG JIAN-

HONG, et al. Reliability evaluation of the gear transmission system for the wind-driven generator based on dynamic [J]. Journal of Chongqing University:Natural Science Edition, 2007, 30(12):1-6.

(编辑 张 革)