文章编号:1000-582X(2011)01-060-06

钒钛铁精矿内配碳球团高温快速直接还原历程

刘松利^{1,2},白晨光¹,胡 途¹,吕学伟¹,邱贵宝¹

(1. 重庆大学 材料科学与工程学院,重庆 400044;2. 攀枝花学院 材料工程学院,四川 攀枝花 617000)

摘 要:采用高温实验炉,在1350℃,氮气保护气氛条件下对钒钛磁铁精矿内配碳球团进行了 阶段还原试验,通过 TG-DSC、XRD、SEM 等检测方法对不同时间内配碳球团还原的组织成分、显 微结构等进行研究。结果表明,钒钛铁精矿的还原历程依次为 Fe2 TiO4 和 Fe3 O4、3 (Fe3 O4). Fe₂TiO₄、Fe₃O₄•Fe₂TiO₄、Fe₂TiO₄和FeO、Fe和FeTi₂O₅;在磁铁矿大量还原生成浮士体的阶段, 钛铁矿与新生成的浮士体发生"钛铁晶石化",最终还原转变为单质铁和含铁黑钛石。

关键词:直接还原历程;钒钛铁精矿;球团;矿石 中图分类号:TF552 文献标志码:A

Quick and direct reduction process of vanadium and titanium iron concentrate with carbon-containing pellets at high temperature

LIU Song-li^{1,2}, BAI Chen-guang¹, HU Tu¹, LV Xue-wei¹, QIU Gui-bao¹

(1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China; 2. Materials Science and Engineering College, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China)

Abstract: By using laboratory high temperature experimental furnace, stage reduction test on vanadium and titanium iron concentrate with carbon-containing pellets under experimental conditions of 1 350 °C and in nitrogen atmosphere is introduced, and its tissue composition, microstructure is also studied by TG-DTA, XRD, SEM and other testing method. The experimental results show that reduction process on quick reduction of vanadium and titanium iron concentrate of carbon-containing pellets respectively is Fe₂ TiO₄ and Fe_3O_4 , $3(Fe_3O_4) \cdot Fe_2TiO_4$, $Fe_3O_4 \cdot Fe_2TiO_4$, Fe_2TiO_4 and FeO, Fe and $FeTi_2O_5$. In the stage of generating float by magnetite iron reduction, the new phase of Fe₂ TiO₄ is generated, and finally vanadium and titanium iron concentrate is reduced into Fe and (Fe, Mg) Ti₂O₅.

Key words: direct reduction process; vanadium and titanium iron concentrate; pellets; ore

钒钛磁铁矿是一种铁、钒、钛等元素共生的复合 矿,具有较高的综合利用价值。现已查明,世界钒钛 磁铁矿的储量达4×10¹⁰t以上,主要集中在如前苏联 的卡契卡纳尔和古谢沃戈尔、美国和中国等国家。其 中,中国的钒钛磁铁矿已探明储量为 9.83×10⁹ t^[1-3]。 采用高炉冶炼处理钒钛磁铁矿,只能回收铁和钒,钛 以 TiO₂ 形式进入高炉渣而无法回收利用。为了实现

铁、钒、钛资源高效清洁分离及综合回收利用,近年来 转底炉煤基直接还原技术成为处理钒钛磁铁矿的新 工艺之一,虽然该工艺已有一定的进展,但基础研究 还很薄弱,进一步深入研究其铁、钛等有价金属在高 温快速还原过程中的相变历程,对该工艺的完善和产 业化应用具有重要的现实意义。

钒钛磁铁矿的物质组成和结构特点决定了其还

收稿日期:2010-09-02

基金项目:国家重点基础研究发展计划资助项目(2007CB613503)

作者简介:刘松利(1972-),男,重庆大学博士研究生,主要从事冶金资源综合利用研究。

白晨光(联系人),男,重庆大学教授,博士生导师,(E-mail)bguang@cqu.edu.cn。

原历程的复杂性。储绍斌等^[4]研究了钒钛铁精矿在 450~850℃的温度范围内分别用 H₂和 CO₂/CO 混 合气体的还原过程,发现钛铁晶石还原后生成钛铁 矿,钛铁矿在还原过程中若有剩余氧化亚铁存在生 成钛铁晶石。何其松^[5]用 H₂-H₂O、CO₂-CO 及 H₂-H₂O-CO₂-CO 混合气体对钛磁铁矿球团进行了大量 的还原过程研究,并提出了钛磁铁矿中赤铁矿和铁 板钛矿两种矿物的还原途径,即 Fe₂O₃→Fe₃O₄→ FeO→Fe和 Fe₂TiO₅→Fe₂TiO₄→FeTiO₃→Ti₃O₅。 还有一些研究者^[6-13]研究了钛铁矿与 H₂、CO₂/CO 混合气体或 C 的还原过程,钛铁矿的还原历程为 FeTiO₃→Ti₃O₅→TiO。

以上研究主要采用气体间接还原的方法,对于 钒钛铁精矿内配碳球团直接还原的还原历程目前还 不清楚。笔者通过高温阶段还原实验,采用 XRD 等 检测方法对还原产物进行物相分析,结合 TG-DSC 综合热分析结果,得出了钒钛磁铁精矿内配碳球团 在高温下快速还原的反应历程。

1 实验材料与方案

1.1 原料

本实验采用的铁矿粉为攀枝花红格钒钛铁精矿, 还原剂为无烟煤,其化学成分如表1和表2所示。制 作球团所用黏结剂为分析纯聚乙烯醇(PVA)。

表⊥ 扒钛铁梢钏的化子风分					
成分	TFe	FeO	Fe_2O_3	SiO_2	CaO
质量分数/%	54.52	24.09	51.18	11.70	0.556
成分	MgO	$\mathrm{Al}_2\mathrm{O}_3$	TiO_2	S	Р
质量分数/%	0.62	3.15	2.46	0.51	2.80

表 2	煤粉的化学成分	

煤的成分			灰分的成分				
С	volatile	灰分	S	${\rm SiO}_2$	Al_2O_3	CaO	MgO
81.95	6.79	10.41	0.69	24.96	40.23	3.78	3.12

1.2 实验方案

钒钛铁精矿和煤粉经过干燥、研磨和筛分,其颗 粒直径分别为 $d_{\text{ore}} \leqslant 88 \ \mu\text{m}, d_{\text{Coal}} \leqslant 245 \ \mu\text{m}$ 。铁精矿 粉和煤粉根据混合料中w(C)/w(O) = 1.2,进行称 量后充分混匀,然后添加适量的黏结剂(有机黏结剂 PVA),利用压片成型机压制成直径为 30 mm 左右 的球团,成型压力为 10 MPa。实验炉为竖式碳化硅 炉,结构示意图如图 1 所示。

实验前,球团先在干燥箱(温度为 120 ℃)中干 燥 6 h,确保球团中的黏结剂和水分能够完全挥发。 实验时,每次取一个球团放在吊篮中,待温度达到设 定温度(1 350 ℃)后,迅速放入在 N₂(300 mL/min) 保护下、直径为 100 mm 的竖式碳化硅炉内,用镍铬 丝悬挂在炉顶上方的铁架上,待还原到某一时间时 迅速取出埋入煤粉中进行冷却,随后进行 XRD 等 分析。

图1 还原装置示意图

2 结果与讨论

2.1 TG-DSC 试验结果

钒钛铁精矿粉与煤粉的混合样在 30~1 400 ℃ 的温度范围内进行了 TG-DSC 综合热分析实验,升 温速率为 15 ℃/min,实验结果如图 2 所示。

%

图 2 混合样综合热分析曲线

62 http://qks.cqu.edu.cn

从图 2 中 TG 曲线可以看出, 矿煤混合物在升 温过程中主要经历 4 个失重阶段。温度低于 460 ℃ 左右时, 试样失重量非常小, 仅为 0.43%; 温度在 490~900 ℃时, 试样失重量为 3.72%, 失重较慢; 当 温度超过 910 ℃后, 试样重量急剧下降, 其中在 900~1 150 ℃的范围内失重最快, 随后失重稍微变 慢。从对应的 DSC 曲线来看, 在低于 900 ℃的温度 范围内有几个平缓的小吸热峰, 试样在这一阶段经 历了一个连续吸热过程。温度超过 900 ℃后, DSC 曲线上出现了 3 个比较大的吸热峰和 1 个小吸热 峰, 其峰值分别为 933、1 102、1 253、1 362 ℃, 说明 在这一阶段试样发生了剧烈的化学反应。

2.2 样品的 XRD 分析

对钒钛铁精矿和在1350 C经过不同还原时间 还原后的球团进行了X射线衍射分析,XRD图谱如 图3所示,主要物相的变化分析如表3所示。

表 3	不同还原时间下还原产物的物相结构
还原时间	物相
0	$\rm Fe_3O_4$, $\rm Fe_{0.23}$ ($\rm Fe_{1.95}$ $\rm Ti_{0.42}$) $\rm O_4$, $\rm Fe_2O_3$ — $\rm FeTiO_3$, $\rm FeTiO_3$
3	$Fe_{3}O_{4}$, FeO, $Fe_{0,23}$ ($Fe_{1,95}Ti_{0,42}$) O_{4} , $FeTiO_{3}$
5	Fe, Fe ₃ O ₄ , FeO, Fe _{0.23} (Fe _{1.95} Ti _{0.42}) O ₄ , Fe _{2.75} Ti _{0.25} O ₄ , FeTiO ₃
7	$\begin{split} & \mbox{Fe}_{, \ Fe}_{3}O_{4} \mbox{, FeO} \mbox{, } Fe_{0, 23} \mbox{ (} Fe_{1, 95}Ti_{0, 42} \mbox{) } O_{4} \mbox{ , } \\ & \mbox{Fe}_{2, 75}Ti_{0, 25}O_{4} \mbox{, } Fe_{5}TiO_{8} \mbox{, } Fe_{2}TiO_{4} \mbox{, } FeTiO_{3} \end{split}$
10	Fe,Fe $_3O_4$,Fe $_{2.75}$ Ti $_{0.25}O_4$,Fe $_5$ TiO $_8$,Fe $_2$ TiO $_4$, FeTiO $_3$
15	Fe, Fe $_3\mathrm{O}_4$, Fe $_{2.75}\mathrm{Ti}_{0.25}\mathrm{O}_4$, Fe $_5\mathrm{TiO}_8$, FeTiO $_3$
20	Fe,FeO,(Fe,Mg)Ti ₂ O ₅ ,FeTiO ₃
25	Fe, (Fe, Mg) $Ti_2 O_5$, Fe TiO_3
30	Fe. (Fe. Mg) Ti ₂ O ₅ . FeTiO ₂

$$\begin{split} \varphi - Fe\,, & \alpha - Fe_2\,O_3 - Fe\,TiO_3\,\,, \\ \beta - Fe_3\,O_4\,\,, \\ \theta - FeO,\, e - Fe_{0,\,\,23}\,(Fe_{1,\,\,95}\,Ti_{0,\,\,42}\,)\,O_4\,\,, \\ \pi - Fe_{2,\,75}\,Ti_{0,\,\,25}\,O_4\,\,\\ & \omega - Fe_5\,TiO_8\,\,, \\ \vartheta - FeTiO_3\,\,, \\ \nu - Fe_2\,TiO_4\,\,, \\ \lambda - (Fe\,,Mg)\,Ti_2\,O_5 \end{split}$$

图 3 还原产物 XRD 图谱

由表 3 和图 3 可知,钒钛铁精矿粉的主要物相是 磁铁矿(Fe₃O₄)和钛磁铁矿(Fe_{0.23}(Fe_{1.95} Ti_{0.42})O₄, Fe₂O₃-FeTiO₃),其次是钛铁矿(FeTiO₃)。经过3 min 还原后的球团中出现 FeO,还原到 5 min 时出现了单 质铁和新相 Fe_{2.75} Ti_{0.25}O₄。还原时间达到 7min 时,还 原球团中出现了 Fe₅ TiO₈ 和钛铁晶石(Fe₂ TiO₄)两新 相。当还原进行到 10min 时,Fe_{0.23}(Fe_{1.95} Ti_{0.42})O₄ 相 消失,钛铁晶石(Fe₂ TiO₄)在还原 15 min 后消失。还 原进行到 20min 时,Fe_{2.75} Ti_{0.25}O₄ 相和 Fe₅ TiO₈ 相消 失,出现了含铁黑钛石(Fe,Mg)Ti₂O₅。还原 25 min 后,还原球团中物相组成为单质铁(Fe)、含铁黑钛石 (Fe,Mg)Ti₂O₅ 和钛铁矿(FeTiO₃)。球团还原 30min 后除钛铁矿的衍射峰强度更弱外,其组成与还原 25 min后相同。

2.3 还原历程的确定

文献[14]中指出钒钛铁精矿的矿物成分主要是 钛磁铁矿[mFeO•Fe₃O₄•n(FeO•TiO₂)],其 次为钛铁矿(FeO•TiO₂)和钛铁晶石(2FeO• TiO₂),此实验所用钒钛铁精矿经XRD物相分析后 并未发现钛铁晶石,这可能是因为铁精矿粉制样过 程中在空气气氛中进行干燥处理的缘故。通过计 算,可以得出纯钛铁晶石只有在很低的氧逸度下才 能稳定存在,脱溶出来的钛铁晶石在较低的温度下 能氧化形成钛铁矿,其氧化反应为^[15]:

 $6 \operatorname{Fe}_2 \operatorname{TiO}_4 + \operatorname{O}_2 \rightarrow 6 \operatorname{FeTiO}_3 + 2 \operatorname{Fe}_3 \operatorname{O}_4$.

(1)

高温快速还原过程中,可能出现的铁氧化物和 钛铁氧化物还原的主要反应及其基本热力学数据如 表 4 和表 5 所示。根据表中反应式的标准自由能变 的表达式,计算出各式反应的标准自由能变化值 ΔG_r^{ϱ} 与温度 T 的关系如图 4 和图 5 所示。

后亡于	$\Delta \mathbf{G}_{\mathbf{r}}^{\theta} = f(T) / $	反应式
汉巡式	$(J \cdot mol^{-1})$	序号
$Fe_3O_4\!+\!C\!=\!3Fe\!+\!CO$	204 388-212.352 <i>T</i>	(2)
FeO+C=Fe+CO	155 848 $-$ 154. 982 T	(3)
$Fe_2 TiO_5 + C = Fe_2 TiO_4 + CO$	127 911 $-$ 192. 982 T	(4)
$Fe_2 TiO_5 + 2C = FeTiO_3 + 2CO + Fe$	109 011-165.682 <i>T</i>	(5)
$Fe_2 TiO_4 + C = Fe + FeTiO_3 + CO$	150 108-144.892 <i>T</i>	(6)
$2FeTiO_3 + C = FeTi_2O_5 + Fe+CO$	170 314.2-155.056 <i>T</i>	(7)
$FeTiO_3 + C = TiO_2 + Fe+CO$	$190\ 900 - 161T$	(8)
3/5FeTi ₂ O ₅ + C = $2/5$ Ti ₂ O ₅ + $3/5$ Fe+CO	214 170-171.806 <i>T</i>	(9)

表 5 CO还原氧化物主要反应及其基本热力学数据

后亡十	$\Delta G_{\rm r}^{\theta} = f(T)$	反应式
汉应式	$/(J \cdot mol^{-1})$	序号
$Fe_3O_4+CO=3Fe+CO_2$	35 380-40.16 <i>T</i>	(10)
$FeO+CO=Fe+CO_2$	$-13\ 160 + 17.21 T$	(11)
$\begin{split} Fe_2TiO_5 + CO &= Fe_2TiO_4 \\ + CO_2 \end{split}$	$-41\ 097-20.\ 79T$	(12)
$Fe_2 TiO_5 + 2CO = Fe + FeTiO_3 + 2CO_2$	-5997+6.51T	(13)
$ \begin{array}{l} Fe_2 TiO_4 + CO = Fe + \\ Fe TiO_3 + CO_2 \end{array} \end{array} \\ \end{array} $	$-18\ 900+27.3T$	(14)
$2FeTiO_3 + CO = FeTi_2O_5$ $+Fe+CO_2$	1 306.2+17.136 <i>T</i>	(15)
$\begin{aligned} &FeTiO_3+CO=TiO_2+Fe\\ &+CO_2 \end{aligned}$	21 892 $+1.192T$	(16)
$3/5FeTi_2O_5 + CO =$ $2/5Ti_3O_5 + 3/5Fe + CO_2$	45 162.6+0.386 <i>T</i>	(17)

图 4 C还原铁氧化物和钛铁氧化物的 ΔG_r^{p} -T图

图 5 CO还原铁氧化物和钛铁氧化物的 ΔG_r^{θ} -T 图

从图 2 中的 TG 曲线看出,试样在 25~430 ℃的 温度范围内失重量很小,仅为 0.37%,DSC 曲线在 115 ℃时有一个吸热峰,这一阶段主要是试样内吸附 水的去除。在 430~900 ℃温度范围内,DSC 曲线上 出现了 3 个较小的连续的吸热峰,试样失重量较小, 为 3.72%,可以判断这一阶段发生的反应主要是固相 反应。从 XRD 物相分析结果可以看出,在还原过程 的前 7min,出现了 Fe、FeO 和 Fe_{2.75} Ti_{0.25} O₄ 三个新 相,其中 Fe_{2.75} Ti_{0.25} O₄ 可以写成 $3(Fe_3 O_4) \cdot Fe_2$ TiO₄。 钛铁晶石的天然矿物于 1946 年由 Mogensen 在研究 Sodra Ulvon 磁铁矿是首次发现,往后的一系列研究 指出,这种矿物具有像磁铁矿那样的反型尖晶石结 构,在 600℃以上能与磁铁矿形成完全的固溶体^[16]。 因此这一阶段发生的反应主要有:

$$FeO(Fe_2 TiO_5) + C \rightarrow FeO + Fe_2 TiO_4 + CO,$$
(18)

$$Fe_2O_3(FeTiO_3 + C \rightarrow Fe_3O_4 + FeTiO_3 + CO,$$
(19)

$$3Fe_3O_4 + Fe_2 TiO_4 \rightarrow 3(Fe_3O_4) \cdot Fe_2 TiO_4, (20)$$

$$Fe_3O_4 + C = FeO + CO,$$
(2)

$$FeO + C = Fe + CO_{\circ}$$
(3)

固相反应受固态扩散传质和界面反应的影响, 速度较慢。在这一温度范围内,还伴随着煤粉中挥 发分的析出,析出物对矿物有一定的还原作用,因此 这一阶段还伴有以下反应的发生:

 $FeO(Fe_2 TiO_5) + CO \rightarrow FeO + Fe_2 TiO_4 + CO_2,$ (21)

$$Fe_{3}O_{4} + CO = FeO + CO_{2}, \qquad (10)$$

$$FeO + CO = Fe + CO_{2}. \qquad (11)$$

温度超过 900 ℃以后,试样重量急剧下降,DSC 曲线上出现 3 个较大的吸热峰,经历了强吸热过程, 可以判断试样在这一阶段主要以气-固反应为主。 从表 3 可以看出,还原产物中没有出现钛氧化物,表 明在此实验条件下反应式(16)和式(17)并没有发 生。如图 5 所示,式(11)、式(14)和式(15)在本实验 所涉及的温度范围内,其标准自由能 ΔG^q,均大于 0, 从热力学来看,在标准状态下这些反应在限定的温 度范围内是不可行的。其中,式(15)的标准自由能 正值最大,考虑其非标准状态下的自由能,有:

$$\Delta G_r = \Delta G_r^{\theta} - 2.303RT \lg \frac{p_{co}}{p_{co_2}} = 1306.2 + 17.136T - 19.147T \lg \frac{p_{co}}{p_{co_2}}$$
若要反应式(15)能发生,其 ΔG_r 需小于 0,当温
度为 1350 ℃时,可以计算出 $\frac{p_{co}}{p_{co_2}} > 8.649$ 。在本实
验条件下,还原反应激烈进行时, $\frac{p_{co}}{p_{co_2}} = 10 \sim 10^2$ 是
很容易达到的。因此,除了反应式(9)、(10)和 (21)
外,在这一阶段试样还发生了以下气固反应:
3(Fe₃O₄) • Fe₂TiO₄ + 6FeO + 2CO₂, (22)
Fe₃O₄ • Fe₂TiO₄ + CO = Fe₂TiO₄ + 3FeO + CO₂,

 $Fe_2 TiO_4 + CO = Fe + FeTiO_3 + CO_2$, (14)

(23)

2FeTiO₃ + CO = FeTi₂O₅ + Fe + CO₂。(15) 如图 3 所示,随着还原反应的进行,还原产物中 出现了钛铁晶石,其衍射峰的相对强度逐渐增强后 又慢慢减弱,还原反应进行 15 min 后此相消失。而 钛铁矿的衍射峰相对强度在同一阶段经历了减弱后 逐渐增强的过程,表明在还原过程中,磁铁矿与钛铁 矿共生的矿物能形成钛铁晶石,即钛铁矿与还原产 生的 FeO 反应生成钛铁晶石,随后钛铁晶石又被还 原为钛铁矿,这与文献[4]中得到的结果一致。

$$FeTiO_3 + FeO \rightarrow Fe_2 TiO_4, \qquad (24)$$

$$Fe_2 TiO_4 + CO = Fe + FeTiO_3 + CO_2.$$

(14)

由图 4 可以看出,从热力学角度看,反应式(8) 和 式(9)在此实验条件下可以发生,但在还原产物中没 有找到钛氧化物,这可能是动力学方面的影响造成 的。含碳球团在炉子内快速加热的过程中,煤粉中的 挥发分及还原气体产物激烈逸出,使碳粒与矿粉颗粒 之间产生孔隙(见图 6),二者接触面积很小或不接触, 以至于固相反应式(8) 和式(9)难以发生。

图 6 还原 20 min 后球团的 SEM 照片

综合以上分析,可将钒钛磁铁矿铁精矿含碳球 团高温快速直接还原相变历程描述如图 7 所示。

3 结 论

1)钒钛铁精矿内配碳球团在 1 350 °C,氮气保护 气氛实验条件下还原 30min 的过程中,其相变历程依 次为:钒钛铁精矿→Fe₂ TiO₄ 和 Fe₃O₄→3(Fe₃O₄)・ Fe₂ TiO₄→Fe₃O₄ • Fe₂ TiO₄ 和 FeO→Fe 和 FeTi₂O₅。

2)在磁铁矿大量还原生成浮士体的阶段,钛铁矿 与新生成的浮士体发生"钛铁晶石化",即 FeTiO₃ + FeO→Fe₂ TiO₄,Fe₂ TiO₄ +CO=Fe+FeTiO₃ +CO₂。

参考文献:

- [1]邓君,薛逊,刘功国.攀钢钒钛磁铁矿资源综合利用现状与发展[J].材料与冶金学报,2007,6(2):83-86.
 DENG JUN, XUE XUN, LIU GONG-GUO. Current situation and development of comprehensive utilization of vanadium -bearing titanomagnetite at PanGang [J].
 Journal of Materials and Metallurgy, 2007, 6(2): 83-86.
- [2]洪流,丁跃华,谢洪恩. 钒钛磁铁矿转底炉直接还原综 合利用前景[J]. 金属矿山,2007(5): 10-13.
 HONG LIU, DING YUE-HUA, XIE HONG-EN.
 Prospect of comprehensive utilization of v-bearing titanomagnetite by rotary hearth furnace process [J].
 Metal Mine,2007(5):10-13.
- [3]杨保祥.攀西地区矿产资源特征及循环经济发展策略 探讨[J].四川有色金属,2006(3):10-12. YANG BAO-XIANG. Mineral resources characteristics of Panzhihua-xichang area and circulation economic development strategy [J]. Sichuan Non-ferrous Metals,2006(3):10-12.
- [4]储绍斌,石笙陶.钒钛磁铁矿精矿粉的还原过程[J].钢铁,1981,6(1):12-15.
 CHU SHAO-BING, SHI JING-TAO. Reduction process of vanadium and titanium iron concentrate[J]. Iron and Steel,1981,6(1):12-15.
- [5]何其松.磁铁矿球团的还原历程及其热力学分析[J].钢 铁,1983,18(4):4-6.
 HE QI-SONG. Reduction process and

thermomechanical analysis of magnetite pelletizing[J]. Iron and Steel, 1983, 18(4):4-6.

 $\left[\begin{array}{c} 6 \end{array} \right]$ GIOVANNI D M, BRUNO B, GIUSEPPE T. High

temperature interaction between H_2O and hydrothermal reduced ilmenite [J]. AIP Conference Proceedings, 2004,699:1060-1066.

- [7] YUAN Z, WANG X, XU C, et al. A new process for comprehensive utilization of complex titania ore [J]. Minerals Engineering, 2006,19(9):975-978.
- [8] ZIETSMAN J H, PISTORIUS P C. Process mechanisms in ilmenite smelting [J]. Journal of the South Aimm, 2004, 104(3):653-660.
- [9] Li W B, YUAN Z F, XU C. Effect of temperature on carbothermic reduction of ilmenite[J]. Journal of Iron and Steel Research, 2005,12 (4):1-5.
- [10] WANG Y M, YUAN Z F. Reductive kinetics of the reaction between a natural ilmenite and carbon [J]. International Journal of Mineral Processing, 2006, 81(3): 133-140.
- [11] EUNGYEUL P, OLEG O. Reduction of titania-ferrous ore by hydrogen[J]. ISIJ International, 2004, 44 (6): 999-1005.
- [12] XU M, GUO M W,ZHANG J L,et al. Beneficiation of titanium oxides from ilmentite by self- reduction of coal bearing pellets[J]. Journal of Iron and Steel Research, International,2006,13(2):6-9.
- [13] FRANCIS A A.EIMIDANY A A. An assessment of the carbothermic reduction of ilmenite ore by statistical design[J]. Journal of Materials Processing Technology, 2008, 19(9):279-282.
- [14] 汪云华,彭金辉. 钒钛磁铁矿制取还原铁粉工艺及改进 途径探讨[J]. 金属矿山,2006(1):20-23.
 WANG YUN-HUA, PENG JIN-HUI. Studies on making powder technology and improved approaches of vanadium and titanium magnetite [J]. Metal Mine, 2006(1):20-23.
- [15] SRINIVASAN N S, LAHIRI A K. Studies on the reduction of hematite by carbon [J]. Metallurgical Transactions B, 1977,8(1):175-178.
- [16] SASTRI M V C, VISWANATH R P, VISWANATHAN B. Studies on the reduction of iron oxide with hydrogen [J]. Hydrogen Energy, 1982, 7(12):951-955.

(编辑 王维朗)