文章编号:1000-582X(2012)01-117-08

脉冲水射流破岩过程中的应力波效应分析

卢义玉^{1a,1b},张 赛²,刘 勇^{1a,1b},陆朝晖^{1a,1b},蒋林艳^{1a,1b}

(1. 重庆大学 a. 煤矿灾害动力学与控制国家重点实验室; b. 复杂煤气层瓦斯抽采 国家地方联合工程实验室, 重庆 400044; 2. 重庆松藻煤电有限责任公司, 重庆 401445)

摘 要:引入 Johnson-Holmquist-Concrete 岩石非线性本构关系,利用光滑流体粒子动力学方法,模拟了脉冲射流在破岩过程中应力波形成、传播及衰减过程,得出了高速脉冲射流作用下岩石 表面不同位置处应力值随时间变化曲线,以及应力波峰值强度与离射流作用点距离的关系曲线,根 据计算结果分析了岩石在应力波效应下的破坏行为以及射流速度、岩石性质对应力波效应的影响。 分析结果表明:脉冲射流的应力波效应具有较强的局部性,应力波峰值强度随与射流作用点距离的 增大而急剧减小;脉冲射流应力波强度、作用范围与射流速度呈正比例关系,其对岩石的体积破坏 存在一个门限速度;不同岩性岩石在脉冲射流应力波作用下的破坏形式有所不同,砂岩等强度较低 岩石的破坏形式主要为应力波对岩石加卸载过程中的拉应力下的裂纹扩展,而石灰岩、花岗岩等脆 性硬岩的破坏形式主要为应力集中导致的纵向破坏。

关键词:脉冲射流;应力波;光滑粒子动力学;岩石破碎 中图分类号:TD823 文献标志码:A

Analysis on stress wave effect during the process of rock breaking by pulsed jet

LU Yi-yu^{1a,1b}, ZHANG Sai², LIU Yong^{1a,1b}, LU Zhao-hui^{1a,1b}, JIANG Lin-yan^{1a,1b}

(1a. State Key Laboratory of Coal Mine Disaster Dynamics and Control; 1b. State and Local Joint Engineering Laboratory of Methane Drainage in Complex Coal Gas Seam, Chongqing 400044, P. R. China;
2. Chongqing Songzao C& E Co., Ltd., Chogqing 401445, P. R. China)

Abstract: A mathematical model of rock breaking under pulsed jet is established by introducing the Johnson-Holmquist-Concrete constitutive relation and the smoothed particle hydrodynamics method. Based on this model, the formation, propagation and attenuation of stress wave during rock breaking by pulsed jet are simulated. The relations between pressure and time at different points on rock surface and the curve of peak stress wave versus distance to action spot are obtained. Destruction behaviors of rock under pulsed jet and effects on stress wave effect from jet velocity and lithology are studied according to the above calculation results, analysis results show that stress wave effect of pulsed jet acts locally and the peak stress wave shrinks sharply as the acting distance increases. The rock breaking mechanism of stress wave is in high direct proportion with jet velocity. There is a threshold velocity before the macroscopic failure. Rocks of different lithologies have different destruction types under pulsed stress wave of pulsed jet. Destruction

收稿日期:2011-07-03

基金项目:国家自然科学基金委专项创新研究群体基金项目(50621403);重庆市杰出青年基金(CSTC2009BA6047);新 世纪优秀人才支持计划(NCET-06-07677);国家重大科技专项大型油气田及煤层开发(2011ZX05065)

作者简介: 卢义玉(1972-), 男, 重庆大学教授, 博士生导师, 主要从事高压水射流理论及其应用等方面的研究工作, (E-mail) Luyiyu@cqu. edu. cn。

type of low strength rock like sandstone is crack propagation under the tensile stress during the high speed process of load-unload, while the destruction type of high strength brittle rocks like granite and limestone is vertical failure of stress concentration.

Key words: pulsed jet; stress wave; smoothed particle hydrodynamics; rock breaking

脉冲水射流具有高度聚能、冲蚀性能强等优 点[1-2],其冲击力是连续射流滞止压力的 1.5~2.5 倍[3]。国内外学者对脉冲水射流破岩做了大量研 究,逐渐形成了以下学说,如水锤作用、冲击作用、水 楔作用、空化作用、脉冲负荷引起的疲劳破坏作用 等[4-7],却鲜有研究脉冲水射流破岩过程中产生的应 力波对岩石的影响。应力波在岩石中形成和传播的 过程也是耗散能量、对岩体做功的过程^[8]。这种作 用在脉冲水射流与岩石作用点附近尤为明显,应力 波使得该区域岩石的内部微观、细观结构发生变化 和产生新的裂隙,这必将会对岩石进一步的破坏起 到积极的作用。然而,由于现有测试设备和技术的 局限性,加之实验室试验所获得的结果基本都是由 实验的终点效应得到,因此,在破环的过程中,岩石 在脉冲水射流作用下应力波如何形成、传播等现象 很难连续观察和测量到,这使得脉冲水射流破岩机 理的理论研究,尤其是脉冲射流破岩应力波效应等 方面的研究相对滞后,制约着脉冲射流破岩技术的 进一步发展。

采用光滑粒子流体动力学方法(简称 SPH 方法)对该过程进行数值计算,SPH 方法解决了有限 元方法(EFA 方法)在计算该类动力学问题中易产 生网格畸变导致计算中止的问题,有效模拟了岩石 在脉冲水射流作用下应力波形成、传播及衰减演化 过程,通过计算结果和实验结果的对比,分析了岩石 材料在脉冲射流应力波作用下的破坏行为。

1 SPH 算法控制方程

脉冲水射流破岩过程中涉及高速、高压及大变 形等问题,采用有限元方法计算时常因网格畸变导 致计算终止^[9]。SPH 法是一种无网格方法。它是 用一系列的粒子代替有限元网格,通过引入空间场 函数和核函数的概念,将基本方程离散^[10],可有效 模拟该类边界不连续、大变形问题。基于 SPH 算法 的离散化控制方程^[11-13]表示如下:

连续性方程

$$\frac{\mathrm{d}\rho_i}{\mathrm{d}t} = \rho_i \sum_j \frac{m_j}{\rho_j} (\dot{u}_j - \dot{u}_i) \cdot \nabla \omega_{ij} , \qquad (1)$$

动量守恒方程

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} = -\sum_j m_j \left(\frac{\sigma_j}{\rho_j^2} + \frac{\sigma_i}{\rho_i^2} + \prod_{ij} I \right) \cdot \nabla \omega_{ij} , \quad (2)$$

能量守恒方程
$$\frac{\mathrm{d}U_i}{\mathrm{d}t} = -\sum_j m_j (\dot{u}_j - \dot{u}_i) \left(\frac{\sigma_i}{\rho_i^2} + \frac{1}{2} \prod_{ij} I\right) \nabla \omega_{ij} , \qquad (3)$$

上式中,

$$\prod_{ij} = \begin{cases} \frac{-\alpha \bar{c}_{ij} \mu_{ij} + \beta \mu_{ij}^2}{\rho_{ij}}, & (\dot{u}_j - \dot{u}_i) (\dot{u}_j - \dot{u}_i) \leqslant 0, \\ 0, & \text{else} \end{cases}$$

$$(4)$$

是为了消除数值振荡而引入的人工粘性力^[14-15]。其 中, $\overline{c_{sj}} = (c_{si} + c_{sj})/2$, $\overline{\rho_{ij}} = (\rho_i + \rho_j)/2$, c_{ij} 为质点的声 速, $\alpha 与 \beta$ 是常数,通常取为 0.1。

2 数学模型

2.1 材料本构和状态方程

岩石材料采用 Johnson-Holmquist-Concrete 本 构模型^[16],该模型综合考虑了岩石材料在脉冲水射 流作用下的大变形、高应变率、高压效应。在该模型 中,规范化的等效屈服应力表达式为:

 $\sigma^* = [A(1-D) + Bp^{*N}][1 + Cln(\epsilon^*)],$ 式中: σ 是实际等效应力, f'_c 是材料的准静态单轴抗 压强度, A, B, C 和 D 分别是无量纲粘性强度、无量 纲压力硬化系数、应变率影响系数和损伤因子,其中 D 介于 0 到 1 之间, N 是压力硬化指数, $p^* = p/f'_c$ 是规范化压力, p 为实际压力, $\epsilon^* = \epsilon/\epsilon_0$ 是无量纲应 变率, ϵ 是应变率, ϵ_0 是参考应变率。该模型中损伤 因子 D 与等效塑性应变和塑性体积应变有关的量, 表示为:

$$D = \sum \frac{\Delta \varepsilon_{\rm p} + \Delta \theta_{\rm p}}{D_1 (p^* + T^*)^{D_2}} \,, \tag{7}$$

式中: $\Delta \varepsilon_{p}$ 和 $\Delta \theta_{p}$ 分别是等效塑性应变增量和塑性体 积应变增量, D_{1} 和 D_{2} 为损伤常数, $T^{*} = T/f'_{e}$ 表示 材料的最大无量纲拉伸体积应力,对于均质材料,实 际压力可表示为:

$$p = K_1 \bar{\mu} + K_2 \bar{\mu}^2 + K_3 \bar{\mu}^3 \,. \tag{8}$$

式中: K_1 , K_2 和 K_3 为材料常数, $\mu = \frac{\mu - \mu_{lock}}{1 + \mu_{lock}}$ 为修正的体积应变, μ_{lock} 为锁定体积应变。本计算中采用的岩石材料模型主要力学参数与实验部分采用的岩样参数相同,如表1所示。

第1期

岩石 岩性	密度 /(kg・m ⁻³)	单轴抗压 强度/MPa	弹性模量 /GPa	泊松比	抗拉强度 /MPa	孔隙率 /%						
砂岩	2 200	51.4	54.3	0.22	1.9	9.7						
石灰岩	2 540	94.2	27.9	0.19	11.7	4.1						
花岗岩	2 680	172.0	19.3	0.20	17.6	0.9						

表1 岩石材料主要物理、力学参数

脉冲水射流采用材料本构方程和状态方程进行 描述。本构方程采用 Null 模型,其偏剪应力 σ'_{ij} 与偏 剪应变率 ε'_{ij} 成正比,即 $\sigma'_{ij} = \mu \varepsilon'_{ij}$ ($i \neq j$)。

状态方程采用 Gruneisen 方程^[17],材料压缩时 的压力 p 被定义为:

$$p = \frac{\rho_0 C^2 \mu \left[1 + \left(1 - \frac{\gamma_0}{2} \right) v - \frac{a}{2} \mu^2 \right]}{\left[1 - (S_1 - 1) \mu - S_2 \frac{\mu^2}{\mu + 1} - S_3 \frac{\mu^3}{(\mu + 1)^2} \right]} +$$

 $(\gamma_0 + a\mu)E_{\circ} \tag{9}$

材料拉伸时 p 可表示为:

 $p = \rho_0 C^2 \mu + (\gamma_0 + a\mu) E_o$ (10) 式中:C 是应力波速度 u_s 与质点速度 u_p 关系曲线的 截距, S_1 , S_2 和 S_3 是常数, γ_0 是 Gruneisen 系数, a是对 γ_0 的一阶体积修正, $\mu = \rho/\rho_0 - 1$, 脉冲射流采 用的相关物理力学参数见表 2。

表 2 脉冲水射流相关的物理、力学参数

密度/(kg・m ⁻³)	$\mu/(Pa \cdot s)$	$C/(\mathbf{m} \cdot \mathbf{s}^{-1})$	S_1	S_2	S_3	γ_0	а
998	0.001	1 480	1.979	0	0	0.11	0

需要说明的是,将脉冲水射流用有一定强度的 材料表示是为了满足光滑粒动力学方法的性质。由 于本文不考虑流体流动和涡旋的形成等因素,因此 该等效是可行的。

2.2 脉冲水射流破岩三维几何模型

建立脉冲水射流破岩三维模型,如图 1 所示,脉 冲水射流简化为圆柱状水束,长度 20 mm,射流直径 2 mm,划分为 480 个光滑粒子。岩石模型采用与实 验岩样相同的尺寸,直径 50 mm,高 30 mm 的圆柱 体,划分为 59 760 个光滑粒子,岩石四周施加无反 射边界条件,并对岩石底面施加全断面约束。

3 计算结果分析及实验对比

3.1 砂岩在脉冲水射流应力波效应下的破坏演化

图 2 是砂岩在 800 m/s 脉冲水射流作用下,应 力波形成、传播、衰减以及岩石破碎坑形成的时序演 化图。在 t=2 µs 脉冲射流作用初期,脉冲射流在岩 石表面形成射流动压力,该动压力作用在岩石表面 以应力波的形式向岩石内部传播;t=2~30 µs 时间 内,该应力波以射流与岩石的接触点为中心,呈球面 波向岩石内部传播,该应力波效应在射流作用点下 方尤为显著,在单个射流脉冲作用时间内,该区域持

图 1 水射流破岩几何模型

续受到压应力作用,使岩石局部弹性势能不断增加; 在 *t*=30 μs 后,压应力作用随单个射流脉冲作用结 束而快速衰减,在作用点下方区域形成应力释放区, 岩石内部弹性势能向应力波传播反方向释放,对该 处岩石形成拉应力作用。*t*=30~50 μs 时,砂岩应 力释放区在拉应力作用下形成球面状裂隙带,该裂 隙带分布与呈球面波传播的应力波波阵面分布较为 一致。 120

图 2 应力波在岩石中的传播时序图

图 3 为与模拟同等工况条件下的砂岩冲蚀 5 s 后的实验结果,喷嘴采用直径为 0.76 mm 的自激振 荡脉冲喷嘴,由于喷嘴的振荡特性,射流出现了较大 的发散,经估算可知射流到达岩石表面时的直径约 为 2 mm,与数值计算模拟模型对应。砂岩试样破碎 坑和模拟结果形貌较为吻合,测量破碎坑坑口处直 径为 3.7 mm,稍大于模拟结果的 3.2 mm,主要是 因为实验破碎坑为多次脉冲反复冲蚀的结果,比模 拟结果的单个射流脉冲的破碎坑直径有所扩大,而 且射流在发生过程中有一定的发散,这也会导致破 碎坑坑口处直径的扩大。

实验砂岩试样出现了多组横向裂纹面,且裂纹 面分布与呈球面波传播的应力波波阵面分布较为一 致,因此判断该裂纹面为脉冲射流应力波作用的结

图 3 砂岩冲蚀破碎图

果,砂岩的强度较低,而裂纹扩展所需的应力又远远 小于抗拉强度,球面状裂隙带受到应力波传播过程 中循环拉应力的作用,当该拉应力足够大时,裂隙扩 展,出现与应力波波阵面分布较为一致的多组裂 纹面。 第1期

3.2 传播距离对应力波效应的影响

脉冲射流产生的应力波在岩石介质传播过程中 因耗能而发生强度衰减。依次在岩石上表面 *x* 轴方 向上选取 6 个粒子作为参照点,位置见图 4,相邻粒 子间距 5 mm,研究了 800 m/s 脉冲射流作用下 3 种 岩石表面该 6 个位置处的粒子压应力峰值强度与离 射流作用点距离的关系,图 5 为模拟结果。

图 4 参照点在模型中的位置

以上关系曲线表明:脉冲射流速度相同时,到达 岩石表面的射流动压力值相同;应力波峰值强度随 着离射流作用点距离的增加急剧衰减,但在不同岩 石中衰减速率有所不同,以距射流轴心10 mm 的粒 子点43620作为考察点,脉冲射流速度为800 m/s 时,砂岩、石灰岩、花岗岩在该位置处的压应力峰值 依次为22.3、12.2、8.7 MPa。

考察砂岩在 800 m/s 脉冲射流速度下的应力波 衰减情况,图 6 显示的是砂岩表面 6 个参照点位置 的压应力变化曲线。

图 6 砂岩表面参照点处压应力值变化曲线

从图 6 中可以看出, 28920 号粒子压应力曲线 随时间无序变化,这主要与其复杂的受力条件有关。 该粒子位于脉冲射流下方岩石表面,不仅受到射流 冲击动压力作用和应力波传播的扰动,还受到脉冲 射流返回流的作用,在脉冲射流作用初期,该点的压 应力迅速升至最大,岩石上该点处在射流动压力作 用下发生破坏;其他5个粒子位于脉冲射流直接作 用范围外,仅受到脉冲射流应力波效应影响,压应力 变化曲线较为规律,以图 7 中 36420 号粒子压应力 变化曲线为例,36420号粒子距射流轴心5mm,位 于脉冲射流直接作用范围之外。在脉冲应力波传播 到该粒子所在位置时,该点处压应力先是快速升至 最大值 76 MPa,此后该点处压应力值又迅速衰减至 0,该过程历时仅为 10⁻⁵ s 量级,说明脉冲射流破岩 应力波效应是一个对岩石局部进行高速加载、卸载 的过程。

图 7 粒子 36420 的压应力变化曲线

3.3 脉冲射流速度对应力波效应的影响

脉冲射流破岩过程中的应力波效应实际上是射 流能量在岩石中的转化、传播的过程。当脉冲射流 脉冲长度、直径一定时,单个射流脉冲的能量主要与 脉冲射流速度有关。

图 8 为砂岩分别在 200、400、600、800 m/s 脉 冲速度下的应力云图,以上应力云图均以单个脉冲 122

的一半长度侵入岩石表面的时刻作为考察点。计 算结果表明脉冲射流速度越大,岩石中应力波的强 度和影响范围也越大,应力波对岩石的破坏作用也 越大。

重庆大学学报

图 8 不同速度下的砂岩应力波分布

图 9 为与模拟同等工况条件下砂岩冲蚀 5 s 后 的实验结果。脉冲射流速度 200 m/s 时,岩石表面 无破坏;400 m/s 时岩石表面出现破碎坑,但无横向 裂纹面,岩样破坏以射流冲蚀作用为主;当射流速度 达到 600 m/s 时,破碎坑坑口位置出现层裂现象;速 度升至 800 m/s 时,破碎坑坑口出现层状破裂,岩样 发生体积破坏,在横向产生多组裂纹面。实验结果 表明,脉冲射流应力波对岩石的体积破坏存在一个 门限速度,小于该门限速度时,岩石的破坏主要以射 流的冲蚀作用为主,脉冲射流速度大于该门限速度 时,脉冲射流应力波效应才会引起岩石的宏观破坏, 即体积破坏。本实验条件下,砂岩产生体积破坏的 门限速度在 400~600 m/s 之间。

3.4 岩石岩性对应力波效应的影响

脉冲射流破岩过程中岩石粒子所受应力以波的 形式向岩石内部更远处传播,波的传播受传播介质 的影响,导致应力波的分布有所不同。

模拟了 800 m/s 的射流速度下应力波在 3 种岩 石中的分布。图 10 为 800 m/s 脉冲射流作用下 3 种不同岩石在 30 μs 时刻的应力云图。脉冲射流速 度一定时,达到岩石表面的射流动压力相同,但应力 波在 3 种岩石中的作用范围有所不同:应力波在砂

 (c) v=600 m/s
 (d) v=800 m/s

 图 9 砂岩在不同脉冲射流速度下的破坏

岩中作用范围要远远大于石灰岩和花岗岩,相应地 应力波传播过程中的加卸载作用范围也较大;而花 岗岩中应力波则相对集中,主要集中在射流冲蚀破 碎坑周围较小区域,并且在该区域应力波强度均值 较大,在破碎坑周围出现应力集中现象。

图 10 3 种岩石在应力波作用下的应力分布

图 11 为 3 种岩样在与模拟相同工况条件下冲 蚀 5 s 后的实验结果。砂岩试样 1-1、1-2、1-3 均 被冲穿,受应力波效应的影响,岩样内部出现大量裂 纹面,裂纹面分布与应力波波阵面分布较为一致且 横向贯通至岩样侧面,如图 12。观察石灰岩和花岗 岩试样,除了岩样 2-1、3-2 出现少量沿应力波波 阵面分布的裂纹面外,石灰岩岩样 2-2、2-3、花岗 岩岩样 3-1、3-3 均发生纵向开裂,纵向裂纹均经 过岩石表面脉冲射流作用点,贯通至岩样底部。

3种岩样的破坏现象与模拟分析结果得到较好 的吻合,脉冲射流产生的应力波在砂岩中作用范围 较大,且砂岩强度较低,应力波传播过程中的加卸载 过程中导致砂岩岩样产生裂纹带,裂纹带分布与应 力波波阵面分布较为一致,在应力波反复作用下裂

图 11 不同岩石在脉冲射流下的破坏

图 12 砂岩试样的横向裂纹面

纹受拉应力作用沿尖端扩展形成与波阵面分布较为 一致的多组裂隙面,形成体积破碎。脉冲射流应力 波在石灰岩尤其是在花岗岩中的作用范围较小,应 力波分布较为集中,射流由于冲蚀作用在岩石表面 形成破碎坑,射流进入破碎坑后形成压力作用导致 破碎坑周围出现应力集中,不同岩石对应力集中的 敏感程度不同^[18],砂岩、泥岩等强度较低岩石塑性 要好于石灰岩、花岗岩等硬岩,屈服阶段较长,局部 最大应力达到屈服极限时,该处材料的变形继续增 长,而不会马上发生断裂;石灰岩、花岗岩等脆性硬 岩没有屈服极限或者屈服极限极短,当局部最大应 力达到岩石屈服极限时沿破碎坑底部发生纵向 劈裂。

4 结 论

1)采用光滑粒子动力学法能够较好地克服有限 元方法在解决该类边界不连续、大变形问题上的困 难,较好地再现了脉冲水射流在破岩过程中应力波 形成、传播及衰减的过程以及脉冲水射流作用下岩 石的破坏行为;

2)脉冲水射流产生的应力波以球面波的形式向

岩石内部传播,对岩石局部进行加载,导致该处的弹 性能增加,随着应力波传播的深入应力波强度迅速 衰减,岩石局部弹性能释放,岩石局部形成与应力波 传播方向相反的拉应力作用,导致岩石出现裂纹带, 应力波强度足够大时,裂纹在拉应力作用下发生扩 展,形成与应力波波阵面分布较为一致的裂纹面;

3)脉冲射流的应力波效应具有较强的局部性, 应力波峰值强度随与射流作用点距离的增大而急剧 减小,应力波在不同岩性岩石中的作用范围有所 不同;

4)脉冲射流速度、岩石岩性不同,脉冲射流应力 波效应有所差异。应力波强度、传播范围与脉冲射 流速度成正比例关系,脉冲射流应力波效应对岩石 的体积破坏存在一个门限速度;岩性差异导致不同 岩石在脉冲水射流应力波作用下的破坏形式有所不 同,砂岩等强度较低岩石的破坏主要为应力波对岩 石的加卸载过程中的拉应力下的裂纹扩展,石灰岩、 花岗岩等脆性硬岩的破坏形式主要为应力集中导致 的纵向劈裂。

参考文献:

[1] 王循明,焦磊,王乐勤.自激脉冲发生机理数值模拟及 参数影响分析[J].浙江大学学报:工学版,2005,39(9): 1450-1454.

WANG XUN-MING, JIAO LEI, WANG LE-QIN. Numerical simulation of self-excited oscillation pulsed jet and analysis of parameters' influence[J]. Journal of Zhejiang University:Engineering Science, 2005,39(9): 1450-1454.

[2] 熊继有,付建红,钱声华,等. 井下它激振荡脉冲射流 机理研究[J]. 西南石油学院学报,2004,25 (2): 100-107.

XIONG JI-YOU, FU JIAN-HONG, QIAN SHENG-HUA, et al. Mechanism of oscillating jet induced by external excitation[J]. Journal of Southwest Petroleum Institute, 2004, 25 (2):100-107.

- [3]李晓红,卢义玉,向文英.水射流技术及在矿业工程中的应用[M].重庆:重庆大学出版社,2007.
- [4]段雄.射流变频冲击破岩的混沌调制技术[M].北京: 科学出版社,2007.
- [5]田方宝,林缅.水射流辅助破岩机理研究(1):气泡空 蚀[J].力学与实践,2007,29(1):29-33.
 TIAN FANG-BAO, LIN MIAN. Studies on the mechanism of water jet-assisted drilling technology(1): cavitation and erosion[J]. Mechanics in Engineering, 2007, 29(1): 29-33.
- [6] 田方宝, 林缅. 水射流辅助破岩机理研究(2):水滴撞击[J]. 力学与实践, 2007, 29(2): 34-39.

TIAN FANG-BAO, LIN MIAN. Studies on the mechanism of water jet-assisted drilling technology(2): high-speed drip impacting with solid target [J]. Mechanics in Engineering, 2007, 29(2): 34-39.

- [7] 卢义玉,李晓红,向文英. 空化水射流破碎岩石的机理研究[J]. 岩土力学,2005,26(8):1233-1237.
 LU YI-YU, LI XIAO-HONG, XIANG WEN-YING.
 Rock erosion mechanism of cavitating water jets[J].
 Rock and Soil Mechanics, 2005, 26(8):1233-1237.
- [8] 施红辉, FIELD J E. 高速液体撞击下固体材料内的应力波传播[J]. 中国科学: G 辑, 2004, 34(5): 577-590.
 SHI HONG-HUI, FIELD J E. Stress wave propagation in high speed liquid solid impact [J]. Science in China; Ser G, 2004, 34(5): 577-590.
- [9]张妹慧,汪继文. SPH 法中初始时粒子配置的分析[J]. 计算机技术与发展,2007,17(6):36-39. ZHANG MEI-HUI, WANG JI-WEN. Analysis of initializing particle configuration in smoothed particle hydrodynamic method[J]. Computer Technology and Development,2007,17(6):36-39.
- [10] LIU M B. Smoothed particle method[M]. Singapore: World Scientific,2003.
- [11] 刘更,刘天祥,谢琴. 无网格法及其应用[M]. 西安:西 北工业大学出版社,2005.
- [12] 白金泽. LS-DYNA 3D 理论基础与工程实践[M]. 北京:科学出版社,2005.
- [13] 汪勇,谢永慧,张荻. 固液高速撞击时材料表面损伤的数值模拟[J]. 西安交通大学学报,2008,42(11): 1435-1440.
 WANG YONG, XIE YONG-HUI, ZHANG DI. Numerical simulation of material surface damage by high speed liquid-solid impact[J]. Journal of Xi'an Jiao Tong University, 2008, 42(11): 1435-1440.
- [14] MONAGHAN J J, GINGOLD R A. Shock simulation by the particle method SPH [J]. Computational Physics, 1983, 52: 374 -389.
- [15] RANDLES P W, LIBERSKY L D. Smoothed particle hydrodynamics: some recent improvements and application [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1):375-408.
- [16] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures [J]. Journal of Applied Mechanics, 2011, 78(5): 1-9.
- [17] ANSYS Incorporation. ANSYS release 12. 0
 documentation: material model examples [EB/OL].
 (2009-06-25)[2011-10-31]. http://www1.ansys.com/
 customer.
- [18] 范天佑. 断裂理论基础[M]. 北京:科学出版社, 2003.

(编辑 郑 洁)

¹²⁴