文章编号:1000-582X(2012)12-057-05

跨临界有机朗肯循环性能分析

高 虹,刘 朝,贺 超,徐肖肖

(重庆大学 a. 动力工程学院; b. 低品位能源利用技术及系统教育部重点实验室, 重庆 400044)

摘 要:选取24种有机工质对利用低品位余热的有机朗肯循环系统性能进行理论分析,研究 发现:当膨胀机入口工质为饱和状态时,最大净功出现在 $T_1/T_c \approx 0.98 \sim 0.99$ 处,且临界温度高的 工质作功能力明显优于临界温度低的工质。对于超临界 ORC 循环,只要 P_1 不太低,提高 T_1 有利 于增大净功、热效率及火用效率。超临界 ORC 的作功能力并非总是优于饱和或过热 ORC。所有工 质状态从亚临界饱和转变为超临界状态时,净功、热效率、火用效率及质量流量的变化都是不连续的。

关键词:废热;有机朗肯循环;热效率;净功;质量流量
 中图分类号:TK123
 文献标志码:A

Performance analysis of transcritical organic rankine cycle

GAO Hong, LIU Chao, HE Chao, XU Xiaoxiao

(a. College of Power Engineering; b. Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, Chongqing University, Chongqing 400044, China)

Abstract: The performance analysis of a transcritical organic Rankine cycle system driven by exhaust heat is presented by using 24 organic working fluids. Four parameters, such as the net power output, thermal efficiency, exergy efficiency, and mass flow rate of working fluid, are used to evaluate the performance of this recovery cycle. The results reveal that the maximum net power can be obtained for the saturated ORC, when T_1/T_c is about 0.98~0.99, and the working fluid with higher critical temperature has more net power output. For the supercritical ORC, the higher expander inlet temperature will benefit the net power output, thermal efficiency, and exergy efficiency, as long as the expander inlet pressure isnnot too low. However, the influences of expander inlet pressure on these performance parameters are linked with the expander inlet temperature and working fluids. The capability of doing power output of supercritical ORC is not always better than that of subcritical ORC. Parameters, such as net power, thermal efficiency, and exergy efficiency or as not proven output of supercritical conditions to supercritical conditions.

Key words: waste heat; organic Rankine cycle; thermal cycle; net power; mass flow rate

锅炉是能量传递与转化系统中最基本的设备, 也是高耗能设备。电站锅炉是第一大耗能设备,按 照设计排烟温度 120~140 ℃计算,低温烟气余热资 源量达 0.7 亿 t 标煤。工业锅炉是除电站锅炉以外的第二大耗能设备,设计排烟温度高于电站锅炉,约为 160~250 ℃,低温烟气余热资源量约 1.1 亿 t 标

收稿日期:2012-07-14

基金项目:国家重点基础研究发展计划资助项目(2011CB710701)

作者简介:高虹(1975-),女,重庆大学博士,主要从事工程热物理方向研究,(E-mail)gaohong@cqu.edu.cn。

58

煤,如何有效利用这部分余热是节能减排的重要课题。有机朗肯循环系统具有效率高、结构简单、环境 友好等优点,可广泛利用于回收工业废热、太阳能 热、地热、生物质热等各种类型中的低品位热能^[1-2]。

文献[3-8]针对使用 R123、R245fa、R245ca、异 丁烯、正戊烷为工质的亚临界系统进行了性能分析。 其中,Tamamoto 发现使用 R123 为工质的 ORC 系 统可获得比以水为工质更好的性能^[3];文献[8]则对 使用 R245fa 为工质的 ORC 系统进行了参数优化。 由于有机工质的临界参数较低,所以可以直接将工 质加热至超临界状态。文献[9]认为超临界 ORC 可 以使工质与热源更好地匹配,因此可减小系统的不 可逆性。文献[10-14]研究了 CO₂、异丁烯、丙烷、丙 烯、二氟甲烷、R245fa 为工质的超临界有机朗肯 循环。

近年来,各国对有机朗肯循环进行了一定的研究,研究成果一般都集中在有机工质的亚临界循环, 也有少数文献研究了超临界循环,但对跨临界循环 关注较少。由于临界点附近存在一些与亚临界或超 临界循环不同的特性,因此文中选取了24种有机工 质进行跨临界有机朗肯循环,应用由美国国家标准 与技术研究院开发的 REFPROP7.1 软件^[15]计算工 质的热物性参数,分析了工质的膨胀机入口温度对 循环效率、净输出功、及火用效率的影响。

1 有机朗肯循环的热力学分析

1.1 有机朗肯循环系统

基本有机朗肯循环系统由蒸发器、膨胀机、冷凝器和泵4个部件组成(如图1所示)。根据汽轮机入口工质的压力不同,可以分为亚临界有机朗肯循环和超临界有机朗肯循环。亚临界有机朗肯循环的 T-S 图如图2所示。

图 1 有机朗肯循环系统

图 2 有机朗肯循环的 T-S 图

1)4-1 过程为工质在蒸发器内的吸热过程

$$Q_{\rm e} = m(h_1 - h_4),$$
 (1)

$$I_{\rm evp} = E_{\rm in} + E_4 - E_1 - E_{\rm out}$$
, (2)

式中:Q_e 为蒸发吸热量;m 为工质循环量;h₄ 和 h₁ 分别为蒸发器进、出口工质比焓;I_{evp}为蒸发器中的 火用损;E_{in}和 E_{out}分别为热源入口及出口的火用,E₄ 和 E₁ 分别为蒸发器中工质入口及出口的火用^{16-17]}。

2)1-2 过程为工质在膨胀机内膨胀过程

$$W_{t} = m(h_1 - h_2) \eta_{exp}, \qquad (3)$$

$$I_{\rm exp} = E_1 - E_2 - W_t, \qquad (4)$$

式中: W_1 为膨胀功; h_1 和 h_2 分别为膨胀机进口、出口工质的比焓; η_{exp} 为膨胀机效率; I_{exp} 为膨胀机中的火用损; E_1 和 E_2 分别为膨胀机中工质入口及出口的火用。

3)2-3 过程为工质在冷凝器内冷凝过程。冷凝 器内工质放出热量为

$$Q_{\rm c}=m(h_2-h_3)\,,\qquad(5)$$

$$I_{\rm end} = E_{lin} + E_2 - E_3 - E_{lout},$$
 (6)

式中:Q。为冷凝放热量;h2 和 h3 分别为冷凝器进、 出口工质比焓;I_{end}为冷凝器中的火用损;E_{ln}和 E_{lout}分 别为冷却水入口及出口的火用,E2 和 E3 分别为冷凝 器中工质入口及出口的火用。

4)3-4 过程为工质泵增压过程,假设为等熵增 压过程,则工质泵消耗功率为

$$W_{\rm p} = m(h_4 - h_3)/\eta_{\rm p}$$
, (7)

$$I_{\rm p} = E_3 - E_4 + W_{\rm p}, \qquad (8)$$

式中:W_p为输入的泵功;h₃和h₄分别为泵的进、出 口工质比焓;I_p为泵中的火用损;E₃和E₄分别为膨 胀机中工质入口及出口的火用。

系统的循环热效率为

$$\eta_t = \frac{W_t - W_p}{Q_{evp}}, \qquad (9)$$

第 12 期

系统的火用效率为

$$\eta_{\rm exg} = \frac{E_{\rm in} - \sum I - E_{\rm out}}{E_{\rm in}} \,. \tag{10}$$

高

1.2 计算参数

1)热源:入口温度:320 ℃,出口温度:60 ℃,质 量流量为1 kg/s。

2)冷却水:入口温度:25 ℃,出口温度 29 ℃。

3)循环工质:膨胀机入口工质范围 T₁:50~ 167 ℃;冷凝器工质出口温度:30 ℃。

4)其它:环境温度为 25 ℃,环境压力为 1 Pa。
 膨胀机效率 η_{exp} = 0.85,泵效率为 η_p=0.7。

1.3 工质

文中选择了 24 种有机工质:R123、R124、R125、 R218、R134a、R141b、R142b、R143a、R236ea、 R245ca、 R245fa、 R32、 Butane、 Isobutene、 Propylene、R11、R113、R114、R115、R12、R152a、 R22、R227ea、R236fa,临界温度:66.17~214.21 ℃。

2 计算结果及分析

当1点为亚临界饱和状态时,随着 T_1 的增大, R32的净功先增大后减小,当 T_1 为347 K时,净功 达到最大值5.287 kW(如图3所示)。R218 和 R141b的净功随 T_1 单调增大,当 T_1 为分别为339 K 和471 K时,R218 和 R141b的净功最大值分别为 2.321 kW 和5.577 kW(如图4、图5所示)。

图 3 R32 净功随 T₁ 的变化

图 6 为 1 点为饱和态时 24 种工质的净功随 T₁ 的变化。比较图中各工质的净功曲线可以得知,临 界温度高的工质的作功能力明显优于临界温度低的 工质。因此,如果从作功能力的观点来选择饱和 ORC 系统的工质,R141b、R11 和 R113 较好。24 种

图 5 R141b 净功随 T₁ 的变化

工质的最大净功都出现在 $T_1/T_c \approx 0.98 \sim 0.99$ 处 (其中 R123、R32、R125、R134a、R245fa、R11、R22、 R115 的最大净功发生在 T_1/T_c 为 0.99 处)。

图 6 24 种工质净功随 T₁ 的变化

对于 R32(如图 3 所示),当 P_1 为 3 MPa 或 4 MPa的过热状态时,尽管工质温度大于饱和态时

的温度,但其净功却小于饱和态时所作的净功,当 P_1 提高至 5 MPa 时,过热 ORC 系统所作的净功才 大于饱和 ORC。当膨胀机入口工质为超临界状态 时,当 T_1 、 P_1 同时较低或 T_1 、 P_1 同时较高时净功输 出较大(当 T_1 <376 K时, P_1 为 6 MPa 时的净输出 功较大,而当 T_1 >407 K时, P_1 为 10 MPa 时的净 输出功较大),但超临界状态时的净功总是大于饱和 态时的净功。

对于 R218(如图 4 所示),由于其临界压力仅为 2.761 MPa,因此在文中计算的压力范围内都是超临 界 ORC 循环。当压力为 3~6 MPa 时,净功都是先 增大后减小,只有当压力大于 8 MPa,净功才会随着 T_1 单调增大。当 P_1 较高而 T_1 较低时,净功输出可 能为负值(当 $P_1 = 10$ MPa, $T_1 = 347$ K, $W_{net} = -7$, 756 kW)。

对于 R141b 而言(如图 5 所示), 过热 ORC 循 环所输出的净功都大于饱和态的净功, 且随着过热 压力的增大, 净功输出增加。当膨胀机入口工质为 超临界状态时, 提高 *P*₁ 对提高净功不利, 且在大部 分工况下, 超临界 ORC 所作的净功都比饱和 ORC 时的净功小, 只有当 *P*₁ 为 5 MPa, 且 *T*₁ 大于 495 K 时, 净功才大于饱和态时的最大净功。

值得注意的是,所有工质状态从亚临界饱和转 变为超临界状态时,净功的变化都是不连续的,在文 中计算的工质范围内,所有工质在临界点两侧的工 况的净功都有较大差距,且靠近临界点的亚临界 ORC 比超临界 ORC 所作的净功多,而且随着超临 界的压力越大,差距越大。

所有工质的循环热效率及火用效率与净功随 T₁ 变化规律相同,因此文中仅给出了 R141b 循环热效 率及火用效率随 T₁ 变化的曲线(如图 7、图 8 所示)。

对于1点位饱和态的ORC而言,随着 T₁的增 大,工质流量的变化会随着工质的不同呈现不同的 变化规律(如图9所示):单调增大(如:R152a及 R32等)、单调减小(如:R113及R236ea等)、先减小 后增大(如:R218及R141b等)。一般来说,临界温 度较高的工质所需的摩尔流量较低。若将摩尔流量 转换为质量流量,由于需要考虑工质的分子量,临界 温度对质量流量的影响规律不明显。

若1点为过热或超临界状态,减小 P₁或增大 T₁都会减小工质流量(如图 10~图 12 所示)。

所有工质状态从亚临界饱和转变为超临界状态时,质量流量的变化都不连续。

工质的选择对于 ORC 系统的性能具有重要影

图 9 24 种工质的摩尔流量随 T₁ 的变化

响,一般来说,理想的有机朗肯循环工质应该满足无 毒、不易燃、不爆炸且与设备材料有良好的相容性等 基本条件,此外,ORC系统还需有较好的系统性能, 在同样的运行工况下能输出更多的净功,且技术经 济性好。ORC系统的经济性分析主要包括蒸发器 第12期

图 10 R32 质量流量随 T₁ 的变化

图 11 R218 质量流量随 T₁ 的变化

图 12 R141b 质量流量随 T₁ 的变化

和冷凝器的换热面积、膨胀机的尺寸及工质流量等 指标,其中蒸发器和冷凝器的换热面积、膨胀机的尺 寸等指标随工质及 T₁的变化规律已在笔者的其他 文章中进行了讨论,此处不再赘述。文中仅将工质 流量作为判断经济性的指标。根据此工质优化准则,建议 R141b、R123、R11、R245fa、R245ca、Butane 作为 ORC 系统的工质。

3 结 论

通对 24 种有机工质的有机朗肯循环的净功、热 效率、火用效率及工质流量的计算,得到以下结论:

1) 当膨胀机入口工质为饱和状态时,工质的最 大净功出现在 $T_1/T_c \approx 0.98 \sim 0.99$ 处;且临界温度 高的工质的作功能力明显优于临界温度低的工质。

2)对于超临界 ORC 循环,只要 P₁ 不太低,提高 T₁ 是有利于增大净功、热效率及火用效率的。但是 P₁ 对净功、热效率及火用效率的影响取决于 T₁ 和工 质的不同。超临界 ORC 的作功能力并非总是优于 饱和或过热 ORC 的。

3)对于亚临界饱和循环,临界温度较高的工质 一般所需的摩尔流量较低;对于过热或超临界 ORC,减小 *P*₁或增大 *T*₁都会减小工质流量。

4)所有工质状态从亚临界饱和转变为超临界状态时,净功、热效率、火用效率及质量流量的变化都是 不连续的。

5)如果将输出尽可能多的净功和需要尽可能少的工质流量作为工质优化的准则,推荐R141b、R123、R11、R245fa、R245ca、Butane 作为 ORC 系统的工质。

参考文献:

- [1] DiPippo R. Second law assessment of binary plants generating power from low-temperature geothermal fluids[J]. Geothermics, 2004, 33(5): 565-586.
- [2] Badr O, O' Callaghan P W, Probert S D. Thermodynamic and thermophysical properties of organic working fluids for Rankine-cycle engines [J]. Applied Energy, 1985,19(1):1-40.
- [3] Yamamoto T, Furuhata T, Arai N, et al. Design and testing of the Organic Rankine Cycle [J]. Energy, 2001,26(3):239-251.
- [4] Hettiarachchi H D M, Golubovic M, Worek W M, et al. Optimum design criteria for an Organic Rankine Cycle using low-temperature geothermal heat sources[J]. Energy, 2007,32(9):1698-1706.

(下转第67页)

http://qks.cqu.edu.cn

第12期

junction in fish bypass systems [D]. Iowa: The University of Iowa, 1992.

- [17] Zhu W M. Characteristics of dividing and combining flows [D]. Montreal, Canada: Concordia University, 1995.
- [18] 茅泽育,罗昇,罗以. 圆形管道 90°汇流口局部能量损失
 [J]. 河海大学学报: 自然科学版, 2006, 34 (4): 387-391.
 MAO Zeyu,LUO Sheng,LUO Yi. Local energy loss at

right-angle junction of circular pipes [J]. Journal of

ちゅうしょうしょう しゅうしょう しょう しょう しょう しょう しょう ひょう ひょう しょう しょう しょう しょう しょう しょう しょう しょう しょう

(上接第61页)

- [5] Mago P J, Chamra L M, Srinivasan K, et al. An examination of regenerative Organic Rankine Cycles using dry fluids [J]. Applied Thermal Engineering, 2008,28(8/9):998-1007.
- [6] Wei D H, Lu X S, Lu Z, et al. Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery [J]. Applied Thermal Engineering, 2008, 28(10): 1216-1224.
- [7] Wei D H, Lu X S, Lu Z, et al. Performance analysis and optimization of Organic Rankine Cycle (ORC) for waste heat recovery [J]. Energy Conversion and Management, 2007, 48(4): 1113-1119.
- [8] Saleh B, Koglbauer G, Wendland M, et al. Working fluids for low-temperature Organic Rankine Cycles[J]. Energy, 2007, 32(7): 1210-1221.
- [9] Chen Y, Lundqvist P, Johansson A, et al. A comparative study of the carbon dioxide transcritical power cycle compared with an Organic Rankine Cycle with R123 as working fluid in waste heat recovery[J]. Applied Thermal Engineering, 2006, 26 (17/18): 2142-2147.
- [10] Zhang X R, Yamaguchi H, Uneno D. Experimental study on the performance of solar Rankine system using supercritical CO₂ [J]. Renewable Energy, 2007, 32(15):2617-2628.
- [11] Zhang X R, Yamaguchi H, Uneno D. Thermodynamic analysis of the CO₂-based Rankine cycle powered by

Hohai University: Natural Sciences, 2006, 34 (4): 387-391.

[19] 茅泽育,赵凯,赵璇,等. 管道汇流口局部阻力试验研究 [J]. 水利学报,2007,38(7):812-818.

MAO Zeyu, ZHAO Kai, ZHAO Xuan, et al. Experimental study on local flow resistance at junctions of circular pipes[J]. Journal of Hydraulic Engineering, 2007,38(7):812-818.

(编辑 陈移峰)

solar energy [J]. International Journal of Energy Research, 2007,31,1414-1424.

[12] Zhang X R, Yamaguchi H, Fujima K, et al. Theoretical analysis of a thermodynamic cycle for power and heat production using supercritical carbon dioxide[J]. Energy, 2007,32(4):591-599.

MAAN

- [13] Karellas S, Schuster A. Supercritical fluid parameters in Organic Rankine Cycle applications[J]. International Journal of Thermodynamics, 2008,11(3):101-108.
- [14] Srinivasan K K, Mago P J, Krishnan S R. Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an Organic Rankine Cycle[J]. Energy, 2010, 35(6):2387-2399.
- [15] Hung T C, Wang S K, Kuo C H, et al. A study of organic working fluids on system efficiency of an ORC using low-grade energy sources [J]. Energy, 2010, 35(3): 1403 -1411.
- [16] Wang J L, Zhao L, Wang X D. A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle[J]. Applied Energy, 2010, 87 (11): 3366-3373.
- [17] Lemmon E W, Huber M L, McLinden M O. Refprop version 7. 1, Nist standard reference database 23, version 7. 1[DB], America, Washington DC: The US Secretary of Commerce, 2003.

(编辑 陈移峰)

Mr Mr M