文章编号:1000-582X(2013)05-031-06

钇对 Mg-12Gd-1Zn-0.6Zr 镁合金组织和性能的影响

潘复生^{1a,1b},杨 帆^{1a},杨明波²,汤爱涛^{1a,1b}

(1. 重庆大学 a. 材料科学与工程学院; b. 国家镁合金工程技术研究中心,重庆 400044;
 2. 重庆理工大学 材料科学与工程学院,重庆 400054)

摘 要:为加强 Mg-Gd-Y基高强镁合金的开发,拓展镁合金的应用,采用金相显微镜、扫描电镜、 X 射线衍射、差热分析和拉伸试验等手段,研究了 Y 对 Mg-12Gd-1Zn-0.6Zr 镁合金组织和性能的影 响。结果表明:在 Mg-12Gd-1Zn-0.6Zr 镁合金中,Y 添加的质量分数为 2% 时对合金铸态组织的影响 不大;当添加 3%和 4%会导致合金铸态组织粗化,并使合金组织中的第二相由不连续分布的细小网状 变成粗大的骨骼状;添加 2%~4%还可使合金挤压后的晶粒细化,其中添加 2%和 3%较添加 4%获得 更好的细化效果。此外,添加 2%~4%可明显提高合金挤压后的抗拉强度和屈服强度,其中添加 2% 可使合金挤压后的抗拉强度、屈服强度和延伸率分别达到 348.8 MPa、256.8 MPa 和 14.7%。

关键词:镁合金;Mg-Gd-Y合金;显微组织;力学性能 中图分类号:TG146.2+2 文献标志码:A

Influences of Y on the microstructures and mechanical properties of Mg-12Gd-1Zn-0. 6Zr magnesium alloys

PAN Fusheng^{1a,1b}, YANG Fan^{1a}, YANG Mingbo², TANG Aitao^{1a,1b}

(1a. College of Materials Science and Engineering; 1b. National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China;

2. Materials Science and Engineering College, Chongqing Institute of Technology, Chongqing 400054, China)

Abstract: To develop Mg-Gd-Y based high-strength alloys and widen the application of magnesium alloys, the effects of Y addition on the microstructure and mechanical properties of Mg-12Gd-1Zn-0. 6Zr alloy are investigated by using both optical and electron microscopy, X-ray diffraction (XRD), differential scanning calorimetric (DSC) analysis, and tensile test. The results indicate that adding 2% Y to the Mg-12Gd-1Zn-0. 6Zr alloy does not cause an obvious change in the as-cast microstructure of the alloy. However, after adding 3% and 4% Y, the as-cast microstructure of the alloy is coarsened, and simultaneously the morphology of the secondary phases in the alloy is changed from the initial discontinuous fine network to thick skeleton-like frame. Furthermore, adding 2% Y to the Mg-12Gd-1Zn-0. 6Zr alloy can also refine the grains of the as-extruded alloy, and adding 2% and 3% Y can obtain higher refining efficiency than adding 4% Y. In addition, adding 2%-4% Y to the Mg-12Gd-1Zn-0. 6Zr alloy can also effectively improve the ultimate tensile strength and yield strength of the as-extruded alloy, and the ultimate tensile strength and elongation of the as-extruded alloy with the addition of 2% Y can reach 348. 8 MPa, 256. 8 MPa and 14. 7%, respectively.

Key words: magnesium alloys; Mg-Gd-Y alloy; microstructure; mechanical properties

收稿日期:2012-12-10

基金项目:国家杰出青年科学基金资助项目(50725413);国家重点基础研究发展计划资助项目(2007CB613704)

作者简介:潘复生(1962-),男,重庆大学教授,博士生导师,主要从事轻合金材料及加工技术的研究,(Tel)023-67605796; (E-mail) fspan@cqu. edu. cn。

32

目前,镁合金的应用尽管越来越广泛,但其相对 较低的强度限制了其在航空航天等行业的应用,因 此高强镁合金的开发正成为国内外研究开发的热 点。Mg-Gd-Y基镁合金由于具有明显的时效特性, 被认为是高强镁合金最有力的候选合金之一。近年 来,国内外围绕 Mg-Gd-Y-Mn^[1-2]和 Mg-Gd-Y-Zr^[3-6] 等 Mg-Gd-Y基镁合金开展了大量的研究。研究结 果^[7-9]发现:在 Mg-Gd-Y-Zr 基础上添加 Zn 会形成 长周期结构(LPSO)从而有可能使合金的性能得到 进一步强化,Liu 等^[9]报道 Mg-10Gd-3Y-1Zn-0.5Zr 合金经过挤压+时效处理后,合金抗拉强度达到 428MPa,延伸率 4%。因此,在众多 Mg-Gd-Y 基合 金中,Mg-Gd-Y-Zn-Zr 镁合金被认为是最有发展潜 力的超高强镁合金^[10-12]。

国内外尽管对于 Mg-Gd-Y-Zn-Zr 镁合金已开 展了一些研究,但研究内容主要集中在合金的时 效行为以及 LPSO 结构对力学性能的影响等方 面^[13]。由于 Y 是 Mg-Gd-Y-Zn-Zr 高强镁合金设 计中至关重要的主体合金元素之一,可以预计, 其含量变化必然会引起合金组织和性能的变化。 然而,目前国内外对于 Y 含量变化影响 Mg-Gd-Y-Zn-Zr 镁合金组织和性能的研究还相对较少, 极大地影响了 Mg-Gd-Y-Zn-Zr 高强镁合金的开 发及应用。基于此,笔者初步调查了 Y 对 Mg-12Gd-1Zn-0.6Zr 组织和性能的影响,以期为 Mg-Gd-Y-Zn-Zr 高强镁合金的成分优化和组织性能 控制提供理论指导。

1 试验材料及方法

笔者所用试验合金的名义成分(质量分数,%)分别为:Mg-12Gd-1Zn-0.6Zr(GWZ120合金)、Mg-12Gd-2Y-1Zn-0.6Zr(GWZ122 合金)、Mg-12Gd-3Y-1Zn-0.6Zr(GWZ123 合金)和 Mg-12Gd-4Y-1Zn-0.6Zr(GWZ124 合金)。由于合金配料时充分考虑了合金元素的烧损率,因此试验合金的实际成分与名义成分基本吻合,实际合金成分见表1。

表 1 试验合金的实际化学成分

%

序号	Gd	Y	Zn	Zr	Mg
GWZ120	11.56	0	1.09	0.42	bal
GWZ122	11.20	2.15	0.96	0.37	bal
GWZ123	11.17	3.08	0.99	0.55	bal
GWZ124	11.24	3.53	0.92	0.34	bal

制备试验合金的原材料分别为纯 Mg 和纯 Zn (> 99. 99%) 以及 Mg-30% Gd、Mg-30% Y 和 Mg-25%Zr中间合金。试验合金的熔炼在坩埚电阻 炉中进行。熔炼时首先将纯 Mg 和纯 Zn 熔化,然后 将合金熔体温度升到 740 ℃并加入中间合金,待中 间合金熔化后进行搅拌除渣,搅拌除渣后将合金熔 体静置 10 min,然后将其浇注于已预热的金属模具 中,待其冷却凝固后取样作铸态组织分析。还将所 得铸锭经 480 ℃×8 h 均匀化处理后,在 480 ℃进行 挤压变形,其中挤压比和挤压速率分别为10:1和 6 mm/s,待挤压完成后取样作挤压组织分析和力学 性能测试。此外,为了解试验合金的凝固行为,对试 验合金进行了 DSC 差热分析。DSC 差热分析在 Netesch STA 449C 型热分析仪上进行,从浇铸铸坯 取 30 g 左右的试样,在氩气保护下将试样在 50 min 内从 30 ℃加热到 700 ℃,然后冷却到 100 ℃。其中 加热和冷却速率控制在15 K/min。

将铸态、均匀化和挤压合金都用苦味酸(酒精与乙酸比例为8:1,苦味酸饱和)腐蚀后,在Neophot-30金相显微镜观察,在OLYMPUS相机下拍摄金 相照片,并用配有EDS装置的Tescan Vega [[LMU 型扫描电镜上观察组织,同时按GBT 6394—2002 标准采用直线截点法测量合金晶粒尺寸。此外,在 40 kV和 150 mA下用 Rigaku D/Max-1200X型X 射线衍射仪分析合金的相组成。而合金的室温拉伸 性能测试在CMT5000 微机控制电子万能试验机上 进行,拉伸试验机的拉伸速度为3 mm/min,试验结 果取 3 次的平均值。

2 结果与分析

2.1 试验合金的铸态组织和均匀化组织

图1显示了铸态试验合金的 DSC 加热曲线。 从图1可以看到,所有试验合金均有两个明显的放 热峰,并且峰值相差不大,说明Y含量变化对 Mg-12Gd-1Zn-0.6Zr合金凝固过程中的相变类型影响不 大。图2显示了铸态试验合金的 XRD 结果。从图 2可以看到,未添加Y的试验合金主要由 α -Mg 和 Mg₃Gd,而添加质量分数为2%~4%的Y后,合金 中还出现 Mg₂₄Y₅新相。由于试验合金中 Gd、Y和 Zn等可能会相互置换形成复杂的化合物。因此,未 添加Y的试验合金中的 Mg₃Gd 相可能为 Mg₃(Gd,Zn)相,而含Y的试验合金中的 Mg₃Gd 和 Mg₂₄ (Gd,Y,Zn)₅相的形式存在。然而,这还需要 进一步的证实。

图 3 和图 4 分别为试验合金铸态组织的金相照 片和 SEM 照片。从图 3 和图 4 可以看出,所有试验 合金均为典型的包晶组织,由非常发达的 α -Mg 和 沿晶界不连续分布的网状第二相组成。与未含 Y 的试验合金相比,添加 2% Y 后合金的铸态组织变 化不大,但 Y 添加量增加到 3%和 4%后,试验合金 的铸态组织粗化,同时网状第二相的数量逐渐增加, 并且第二相的形貌也由细小网状逐渐变成相互连接 的粗大骨骼状。而从试验合金的 EDS 结果(见表 2) 可以看出,未添加 Y 的试验合金中第二相主要包括 Mg、Gd 和 Zn 3 种元素且 Mg/(Gd+Zn)原子比约 为 4.49,说明试验合金中的第二相为 Mg₃(Gd,Zn)。 而对于含 Y 的试验合金,随着 Y 添加量从 2%增加 到 4%,基体中 Y 元素的浓度明显增加,并且网状第 二相的 Mg/(Gd+Y+Zn)原子比分别为 4.20、3.88 和 5.35,说明含 Y 试验合金均由固溶了 Gd、Y 和 Zn 的 α-Mg 相、Mg₃(Gd,Y,Zn) 和 Mg₂₄(Gd,Y, Zn)₅ 共晶相组成。

图 3 实验合金铸态组织的金相照片

(c)GWZ123合金

(d)GWZ124合金

图 4 实验合金铸态组织的 SEM 照片

表 2 试验合金中基体和共晶相的 EDS 结果 %

合金	分析位置	Mg	Gd	Y	Zn
GWZ120	基体	98.64	1.36	0	0
	共晶相	81.81	12.25	0	5.95
GWZ122	基体	83.99	1.35	0.33	0.00
	共晶相	54.10	7.37	1.92	3.59
GWZ123	基体	93.20	1.44	0.61	0.37
	共晶相	59.66	7.83	3.19	4.34
GWZ124	基体	88.46	1.55	1.18	0.00
	共晶相	72.34	6.95	3.99	2.59

34

从图 5 可以看到,试验合金经均匀化退火后,铸 态组织中原有的包晶组织基本消失,并且晶界上不 连续分布的网状第二相部分溶入了 α-Mg 基体和部 分转变成晶界处堆垛层错 X 相^[8],说明有可能发生 了 β-Mg₃(Gd, Y, Zn)/ Mg₂₄(Gd, Y, Zn)₅→X 的转 变。而对于含Y试验合金,随着Y含量由2%增加 到4%,均匀化组织中的方块状白色颗粒明显增加。 经 EDS 结果分析并结合已有的研究^[14], 白色方块颗 粒含 Gd、Y 量很高,其可能是富稀土颗粒。EDS 结 果进一步发现,试验合金均匀化组织中晶粒内的层 片状相和晶界上的网状 X 相的 Gd、Y 和 Zn 含量比 基体含量高,其可能是已报道的 LPSO 结构^[9-10,14-16]。

(c)GWZ123合金

图 5 试验合金均匀化组织的 SEM 照片

2.2 试验合金挤压后的力学性能和组织

从表 3 可以看出,在 Mg-12Gd-1Zn-0.6Zr 镁合 金中添加 2%~4%Y 可明显提高合金挤压后的抗 拉强度和屈服强度,其中添加 2%Y 使合金挤压后 的抗拉强度、屈服强度和延伸率分别达到 348.8 MPa、256.8 MPa 和 14.7%。但是随着 Y 添加量增加到3%和4%,试验合金的抗拉强度较 添加2%时分别下降3.0%和8.2%,同时延伸率 也分别降低 68% 和 69%。结果表明:Y 含量变化 对 Mg-12Gd-1Zn-0.6Zr 镁合金挤压后的力学性能 存在明显影响。

表 3 试验合金挤压后的室温拉伸性能

合金	$\sigma_{0.2}/\mathrm{MPa}$	$\sigma_{\rm b}/{ m MPa}$	δ / $\%$
GWZ120	175.8	268.7	10.1
GWZ122	256.8	348.8	14.7
GWZ123	254.6	338.1	4.8
GWZ124	225.2	320.3	4.5

Y含量变化对 Mg-12Gd-1Zn-0.6Zr 镁合金挤 压后力学性能的影响可能与 Y 含量变化引起的 组织变化有关。从图 6 可以看到,试验合金的挤 压组织均为等轴晶粒,说明挤压时发生了完全的

图 6 实验合金挤压组织的金相照片

动态再结晶。依据晶粒测量结果:不同 Y 含量 (0%、2%、3%、4%)试验合金挤压后的平均晶粒 尺寸分别为 18.2,5.7,7.5,14.1 μ m,表明添加 2%~4% Y 到 Mg-12Gd-1Zn-0.6Zr 镁合金中可 细化合金挤压后的晶粒,其中添加 2%和 3%能较 添加 4%获得更高的细化效果。原因可能与不同 Y 含量试验合金中的第二相阻碍再结晶晶粒长大 的作用大小有关。

此外,试验挤压后第二相粒子的多少、形态和 分布也会对挤压态性能产生很大的影响。从图 6 可以看出:含0%和含2%Y试验合金中第二相粒 子在横截面和纵截面上呈均匀弥散分布。但对于 3%和4%Y的试验合金,其纵截面上的第二相粒 子都呈明显流线分布且不均匀,而这有可能造成局 部区域在拉伸变形过程中得不到充分协调而形成 较大的应力集中,从而在微区形成解理台阶,并导 致在局部形成二次裂纹,从而使得合金的塑性降 低。基于上述分析可以初步确定:试验合金挤压后 的力学性能差异主要与晶粒细化和第二相强化的 影响有关。

试验合金挤压后的力学性能差异还可从合金 的拉伸断口形貌得到进一步证实。由图 7(a)和 (b)可知,含0%和含2%Y试验合金的断口存在较 多的韧窝和少量的撕裂棱,说明其断裂方式以韧性 断裂为主,但同时发生了解理断裂。而含3%Y试 验合金的断口存在较少的撕裂棱、韧窝和大量微裂 纹(图 7(c)),裂面上有凹陷,裂纹主要沿着α-Mg相 晶界及第二相薄弱环节扩展。显然,含3%Y的试

验合金显示了韧性断裂为主,局部发生解理断裂为 辅的断口形貌。对于 4%Y的试验合金,其拉伸断 口中出现了大量的解理平台和解理断裂的河流花 样(图 7(d)),并且发现有大量的微裂纹,说明其断 裂形式主要以解理断裂为主。

3 结 论

在 Mg-12Gd-1Zn-0.6Zr 镁合金中添加不同含量的 Y 得到如下结论:

1)添加量为 2%时对合金铸态组织的影响不 大,但添加 3%和 4%会导致合金铸态组织粗化,并 使合金组织中的第二相由不连续分布的细小网状变 成粗大的骨骼状。

2)添加量为 2%~4%可使合金挤压后的晶粒 细化,其中添加 2%和 3%能较添加 4%获得更高的 细化效果。

3)添加量为 2%可同时提高合金挤压后的抗拉 强度、屈服强度和延伸率,而添加 3%和 4%虽然也 能明显提高合金挤压后的抗拉强度和屈服强度,但 会使合金挤压后的延伸率显著降低。

4)在 2%、3% 和 4% 的 3 个添加量中,以添加 2% 相对较优,其可使该合金挤压后的抗拉强度、屈服强度和延伸率分别达到 348.8 MPa、256.8 MPa 和 14.7%。

参考文献:

[1]方西亚,易丹青,王斌,等. Mg-Gd-Y-Mn 合金挤压及时 效过程中的组织与力学性能[J]. 材料热处理学报, 2008,29(3):108-112.

FANG Xiya, YI Danqing, WANG Bin, et al. Microstructure and mechanical properties of Mg-Gd-Y-Mn alloy during extrusion and aging process [J]. Transactions of Materials and Heat Treatment, 2008, 29(3):108-112.

[2] 熊创贤,张新明,陈健美,等. Mg-Gd-Y-Mn 耐热镁合金 的压缩变形行为研究[J]. 材料热处理学报,2007, 28(3):47-53.

XIONG Chuangxian, ZHANG Xinming, CHEN Jianmei, et al. Deformation behavior of Mg-Gd-Y-Mn heat resistant magnesium alloy during hot-compression[J]. Transactions of Materials and Heat Treatment, 2007, 28(3):47-53.

- [3] Anyanwu I A, Kamado S, Kojima Y. Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys [J]. Materials Transactions, 2001,42(7):1206-1211.
- [4] Chang J W, Guo X W, He S M, et al. Investigation of the corrosion for Mg-xGd-3Y-0. 4Zr (x = 6, 8, 10, 12)

36

wt%) alloys in a peak-aged condition[J]. Corrosion Science,2008,50(1):166-177.

- [5] Gao L, Chen R S, Han E H. Fracture behavior of high strength Mg-Gd-Y-Zr magnesium alloy [J]. Transactions of Nonferrous Metals Society of China, 2010,20(7):1217-1221.
- [6] Gao Y, Wang Q D, Gu J H, et al. Behavior of Mg-15Gd-5Y-0. 5Zr alloy during solution heat treatment from 500 to 540 °C [J]. Materials Science and Engineering A, 2007,459(1/2):117-123.
- [7] Li D J, Zeng X Q, Dong J, et al. Microstructure evolution of Mg-10Gd-3Y-1. 2Zn-0. 4Zr alloy during heat-treatment at 773 K [J]. Journal of Alloys and Compounds, 2009, 468(1/2):164-169.
- [8] Zhang S, Yuan G Y, Lu C, et al. The relationship between (Mg,Zn)₃RE phase and 14H-LPSO phase in Mg-Gd-Y-Zn-Zr alloys solidified at different cooling rates [J]. Journal of Alloys and Compounds, 2011, 509(8):3515-3521.
- [9] Liu X B, Chen R S, Han E H. Effects of ageing treatment on microstructures and properties of Mg-Gd-Y-Zr alloys with and without Zn additions[J]. Journal of Alloys and Compounds, 2008, 465(1/2):232-238.
- [10] Yamada K, Okubo Y, Kamado S, et al. Precipitate microstructures of high strength Mg-Gd-Y-Zn-Zr alloys[J]. Advanced Materials Research, 2006, 11/12: 417-420.
- [11] Yamada K, Okubo Y, Shiono M, et al. Alloy development of high toughness Mg-Gd-Y-Zn-Zr alloys[J]. Materials Transactions, 2006, 47 (4):

1066-1070.

[12] 郭永春,刘涛,李建平,等. Mg-12Gd-4Y-1Zn-0.5Zr 合金的显微组织和力学性能[J]. 西安工业大学学报,2007,27(3):242-246.
 GUO Yongchun, LIU Tao, LI Jianping, et al.

Microstructure and mechanical properties of Mg-12Gd-4Y-1Zn-0.5Zr alloy[J]. Journal of Xi´an Institute of Technology,2007,27(3):242-246.

- [13] Honma T, Ohkubo T, Kamado S, et al. Effect of Zn additions on the age-hardening of Mg-2. 0Gd-1. 2Y-0. 2Zr alloys [J]. Acta Materialia, 2007, 55 (12): 4137-4150.
- [14] Li D J, Zeng X Q, Dong J, et al. Influence of heat treatment on microstructure and mechanical properties of Mg-10Gd-3Y-1. 2Zn-0. 4Zr alloy[J]. Transactions of Nonferrous Metals Society of China, 2008, 18 (1): 117-121.
- [15] Wu Y J, Lin D L, Zeng X Q, et al. Formation of a lamellar 14H-type long period stacking ordered structure in an as-cast Mg-Gd-Zn-Zr alloy[J]. Journal of Materials Science, 2009, 44(6):1607-1612.
- [16] 曾小勤,吴玉娟,彭立明,等. Mg-Gd-Zn-Zr 合金中的 LPSO 结构和时效相[J]. 金属学报,2010,46(9): 1041-1046.

ZENG Xiaoqin, WU Yujuan, PENG Liming, et al. LPSO structure and aging phases in Mg-Gd-Zn-Zr alloy[J]. Acta Metallurgica Sinica, 2010, 46 (9): 1041-1046.

(编辑 王维朗)