文章编号:1000-582X(2013)06-026-09

盾构机刀盘驱动多级行星轮系的动力学特性

赵 勇,秦大同

(重庆大学 机械传动国家重点实验室,重庆 400044)

摘 要:为揭示盾构机刀盘驱动多级行星轮系的动力学特性,考虑到各级之间由于初始啮合位 置的不同使啮合刚度和啮合误差均产生相位差,以及各构件支承刚度、时变啮合刚度、啮合误差等 影响因素,建立了盾构机刀盘驱动多级行星轮系纯扭转动力学模型并进行了动力学特性分析。固 有特性分析表明,多级行星传动系统较单级传动系统呈现出独特多样的振动模态;通过动态响应分 析,获得了各级传动动态啮合力的时域及频域响应。结果表明,中、高速级传动的激振力频率较系 统的固有频率相近,易引起系统的谐振,应在设计中特别注意。并求得各级传动的动载系数,为该 行星轮系的动态优化设计奠定了基础。

关键词:多级行星轮系;固有频率;动态响应;动载系数 中图分类号:TH132.425 文献标志码:A

Dynamic characteristics of multi-stage planetary gear trains in shield machine cutter drive

ZHAO Yong, QIN Datong

(The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China)

Abstract: A purely torsional dynamic model of multi-stage planetary gear trains is developed to investigate the dynamic characteristics of the transmission system in shield machine cutter drive. In the model, phase difference between mesh stiffness and error among each stage caused by different initial mesh positions is considered, and other factors such as component bearing stiffness, time-varying mesh stiffness and error are considered as well. Inherent characteristic analysis shows there are more unique and diverse vibration modes in multi-stage planetary gear trains than in single-stage planetary gear trains. Through dynamic response analysis, time-domain and frequency-domain response of dynamic meshing force of each stage is obtained. As the frequency of exciting force of medium-speed and high-speed stage is in proximity to the natural frequency of the system, harmonic resonance tends to occur, which needs to be paid great attention to. Dynamic factors of each stage are also computed and prepare the ground for the dynamic optimizing design of planetary gear trains.

Key words: multi-stage planetary gear trains; natural frequencies; dynamic response; dynamic factor

收稿日期:2013-02-07

基金项目:国家高技术发展计划资助项目(2007AA041802)

作者简介:赵勇(1978-),男,重庆大学博士研究生,主要从事机械传动系统动力学、可靠性研究。

秦大同(联系人),男,重庆大学教授,博士生导师,(Tel)023-65104217;(E-mail)dtqin@cqu.edu.cn。

第6期

盾构机是用于地下隧道掘进施工的重要装备, 其刀盘驱动主减速器是进行掘进作业的传动装置, 起着驱动刀盘切割岩土的作用。由于盾构机刀盘的 工作转速低、输出扭矩大,刀盘驱动主减速器结构上 通常采用三级 2K-H 行星传动串联的型式,其机构 简图如图 1 所示。其中,s_i、p_i、c_i(*i*=1,2,3)分别表 示第*i*级的太阳轮、行星轮和行星架,*r*表示内齿轮, 三级传动的内齿轮连成一体,并固结在机架上。由 于盾构机掘进施工的地质构造复杂,掘进时刀盘驱 动主减速器在变载荷工况下工作^[1-2];加上三级行星 传动的结构较为复杂,其动力学特性与通常的单级 行星齿轮传动有较大的不同,因此,研究盾构机刀盘 驱动主减速器传动系统的动力学特性,对提高主减 速器的运行平稳性和工作可靠性有着重要意义。

图 1 盾构机刀盘驱动主减速器机构简图

在行星传动动力学研究方面,Kahraman^[3]建立 了 2K-H 型直齿行星传动的纯扭转动力学模型,并 分析了系统的固有特性; Hbaieb^[4]基于纯扭转动力 学模型,分析了行星轮系的时变啮合刚度对系统动 力稳定性的影响;Ambarisha 等^[5-6]研究了行星轮间 啮合相位对行星轮模式的影响,并建立行星轮系的 集中参数模型和有限元模型,对其非线性动力学响 应进行了研究;Al-shyyab 等^[7]建立了单级行星轮系 非线性扭转振动模型,并研究了分叉、混沌等非线性 现象。国内学者杨建明等[8]基于纯扭转振动模型, 纠正了文献[3]中的不妥之处,分析了系统固有振动 特性及其对设计参数的灵敏度;宋轶民等[9]进一步 计入了影响系统动力学性能的2个关键因素,建立 了 2K-H 行星传动的修正扭转模型;张俊等^[10]建立 了计入齿圈柔性的直齿行星传动精细化动力学模 型,分析了系统的固有特性;段福海等[11]对钢/塑齿 轮组合行星传动的振动特性进行了研究。

上述对行星传动动力学的研究大多以单级传动 为对象,对多级行星传动动力学的研究较少。目前 见到的文献主要有赵永强^[12]等对船用两级人字齿 行星传动系统振动特性的研究以及 Al-shyyab^[13]对 两级复合行星传动系统动力学特性的研究。文中以 盾构机刀盘驱动主减速器三级行星轮系为研究对 象,计及轮齿时变啮合刚度、综合啮合误差等因素建 立系统的纯扭转动力学模型,并对系统的固有特性 及动态响应进行了分析,求得各级啮合传动的动态 啮合力及动载系数,为系统的动态优化设计奠定了 基础。

1 行星传动系统动力学模型

文中采用集中参数法建立系统的动力学模型, 如图 2 所示为三级行星传动中某一级的动力学 模型。

图 2 盾构机减速器传动系统纯扭转动力学模型

建模基于如下简化和假设:

1)将系统简化为以各轮齿为弹簧,齿轮本体及 行星架为刚体的集中参数系统;

2)各行星轮沿中心轮圆周均布,且其质量、转动 惯量均相同;

3)由于内齿轮固连在机架上,其径向支承刚度 与轮齿啮合刚度的比值大于 10,分析时仅考虑各构 件的扭转振动^[3];

4)系统中各构件支承刚度为常值,而轮齿啮合 刚度按矩形波规律变化^[14];

5)三级传动系统中前一级行星架与后一级太阳 轮之间刚性连结。不计阻尼。

根据上述假设,各级行星齿轮系统均以各自行 星架随动坐标系为参照系,依据牛顿第二定律建立 各构件的运动微分方程,然后综合得到系统的运动 微分方程组,并写成矩阵形式为

$$M \ddot{q} + Kq = T + F, \qquad (1)$$

式中,q为系统广义坐标列阵,M、K分别为系统的广 义质量矩阵和刚度矩阵,T、F分别为外激振力列阵 和内激振力列阵。且有
$$\begin{split} \mathbf{M} &= \text{diag} \big[I_{\text{c}}^{(1)}, I_{\text{s}}^{(1)}, I_{1}^{(1)}, I_{2}^{(1)}, I_{3}^{(1)}, I_{\text{c}}^{(2)}, I_{\text{s}}^{(2)}, I_{1}^{(2)}, I_{2}^{(2)}, \\ & I_{3}^{(2)}, I_{4}^{(2)}, I_{\text{c}}^{(3)}, I_{\text{s}}^{(3)}, I_{1}^{(3)}, I_{2}^{(3)}, I_{3}^{(3)}, I_{4}^{(3)}, I_{\text{r}} \big]_{\circ} \end{split}$$

其中,各级行星架(含行星轮)对质心轴的总转动惯 量为

$$I_{c}^{(i)} = N_{i} [I_{1}^{(i)} + m_{1}^{(i)} (r_{c}^{(i)})^{2}] + I_{c}^{(i)}$$
, $K = egin{bmatrix} K_{11} & O & O & K_{14} \ K_{22} & O & K_{24} \ K_{33} & K_{34} \ (sym.) & K_{44} \end{bmatrix}$,

式中, I_{co}^{0} 为各级行星架(不含行星轮)的总转动惯 量, K_{11} 为5×5的对称矩阵, K_{22} 、 K_{33} 均为6×6的对 称矩阵, K_{44} 为单元素矩阵, K_{14} 为5×1的列矩阵, K_{24} 、 K_{34} 均为6×1的列矩阵。O为零矩阵。且各矩 阵中的非零元素如下

$$\begin{aligned} (\mathbf{K}_{ii})_{11} &= \sum_{n=1}^{N_{i}} (k_{sn}^{(i)} \cos^{2} a_{s}^{(i)} + k_{tn}^{(i)} \cos^{2} a_{r}^{(i)}) \cdot (r_{c}^{(i)})^{2} (K_{ii})_{12} = \\ &- \sum_{n=1}^{N_{i}} k_{sn}^{(i)} r_{c}^{(i)} r_{s}^{(i)} \cos^{2} a_{s}^{(i)} , \\ (K_{ii})_{1,n+2} &= k_{sn}^{(i)} r_{c}^{(i)} r_{n}^{(i)} \cos a_{s}^{(i)} - k_{tn}^{(i)} r_{c}^{(i)} r_{n}^{(i)} \cos a_{r}^{(i)} (K_{ii})_{22} = \\ &\sum_{n=1}^{N_{i}} k_{sn}^{(i)} (r_{s}^{(i)})^{2} , \\ (K_{ii})_{2,n+2} &= -k_{sn}^{(i)} r_{s}^{(i)} r_{n}^{(i)} , \\ (K_{ii})_{n+2,n+2} &= (k_{sn}^{(i)} + k_{tn}^{(i)}) \cdot (r_{n}^{(i)})^{2} , (n = 1, 2, \cdots, N_{i}) , \\ &\mathbf{K}_{44} &= \sum_{i=1}^{3} \sum_{n=1}^{N_{i}} (k_{tn}^{(i)} (r_{r}^{(i)})^{2}) + k_{tt} (r_{r}^{(3)})^{2} , \\ &\mathbf{K}_{44} &= \sum_{i=1}^{3} \sum_{n=1}^{N_{i}} (k_{tn}^{(i)} (r_{r}^{(i)})^{2}) + k_{tt} (r_{r}^{(3)})^{2} , \\ &\mathbf{K}_{i4} &= \left[\sum_{n=1}^{N_{i}} k_{tn}^{(i)} r_{c}^{(i)} r_{r}^{(i)} \cos a_{r}^{(i)} , 0 , - k_{t1}^{(i)} r_{1}^{(i)} r_{r}^{(i)} , \\ &- k_{t2}^{(i)} r_{2}^{(i)} r_{r}^{(i)} , \cdots , - k_{tN_{i}}^{(i)} r_{N_{i}}^{(i)} r_{r}^{(i)}]^{\mathrm{T}} , \\ &\mathbf{T} &= \left[-i_{1} T_{eq} , T_{eq} , 0 , 0 , 0 , - i_{1} i_{2} T_{eq} , 0 , 0 , 0 , 0 \right]^{\mathrm{T}} , \end{aligned}$$

 $F = [F_1, F_2, F_3, F_4]^T$, 式中, F_1 为5×1的列矩阵, F_2 、 F_3 均为6×1的列矩 阵, F_4 为单元素矩阵。且有

$$F_{i} =$$

$$\sum_{n=1}^{N_{i}} (k_{sn}^{(i)} r_{c}^{(i)} e_{sn}(t)^{(i)} \cos \alpha_{s}^{(i)} + k_{rn}^{(i)} r_{c}^{(i)} e_{rn}(t)^{(i)} \cos \alpha_{r}^{(i)}) - \sum_{n=1}^{N_{i}} k_{sn}^{(i)} r_{s}^{(i)} e_{sn}(t)^{(i)} k_{s1}^{(i)} r_{1}^{(i)} e_{s1}(t)^{(i)} - k_{r1}^{(i)} r_{1}^{(i)} e_{r1}(t)^{(i)} k_{s2}^{(i)} r_{2}^{(i)} e_{s2}(t)^{(i)} - k_{r2}^{(i)} r_{2}^{(i)} e_{r2}(t)^{(i)} \vdots k_{sN_{i}}^{(i)} r_{N_{i}}^{(i)} e_{sN_{i}}(t)^{(i)} - k_{rN_{i}}^{(i)} r_{N_{i}}^{(i)} e_{rN_{i}}(t)^{(i)}$$

$$F_4 = \sum_{i=1}^{3} \sum_{n=1}^{N_i} k_{nn}^{(i)} r_{r}^{(i)} e_{nn}(t)^{(i)}$$

式中:角标 i=1,2,3 分别指传动系统的第一级、第 二级和第三级;角标 c,s,r,1,2,…N_i 分别表示行星 架、太阳轮、内齿轮、第1个、第2个以及第Ni个行 星轮, N_i 为第 *i* 级传动的行星轮个数; $\theta_i^{(i)}$ 、 $I_i^{(i)}$ (*j*= $c,s,1,2,\dots N_i$)分别为第*i*级传动中构件*j*由于振 动而产生的角位移以及绕自身质心轴的转动惯量; $r_i^{(i)}(j=c,s,r,1,2,\cdots,N_i)$ 为第 *i* 级传动中构件 *j* 的 基圆半径(对行星架 c 则为行星轮中心分布圆的半 径)。因系统各级内齿轮刚性连为一体,故用 θ_r 、 I_r 表示其由于振动而产生的角位移和绕自身质心轴的 转动惯量。m₁⁽ⁱ⁾ 为第 i 级传动的行星轮质量。k_m⁽ⁱ⁾、 $k_{sn}^{(i)}(n=1,2,\dots,N_i)$ 分别为第*i*级第*n*路啮合传动 的内、外啮合刚度;k₁为内齿轮的切向支承刚度;e₁ $(t)^{(i)}$ 、 $e_{sn}(t)^{(i)}$ ($n=1,2,\dots,N_i$)分别为第 *i* 级第 *n* 路 啮合传动的内、外啮合误差; $\alpha_r^{(i)}$ 、 $\alpha_s^{(i)}$ 分别为第 i级 传动内、外啮合的啮合角。T_{eq}为系统输入端太阳轮 轴上的当量扭矩, i1、i2、i3 分别为各级传动的传 动比。

2 固有特性分析

基于上述动力学模型,采用归纳方法对盾构机 主减速器三级行星传动系统的固有特性进行分析。 该传动系统的基本参数如表1所示。

表1 盾构机减速器行星传动系统基本参数

	基本参数	太阳轮	行星轮	2 内齿轮	行星架	
第 1 级	M/kg	14.787	1.598	104.485	16.767	
	$I/(\mathrm{kg} \cdot \mathrm{m}^2)$	0.022	0.002	2.447	0.145	
	$K_{\rm t}/({\rm N} \cdot {\rm m}^{-1})$	0.000	0.000	_	0.000	
	z	25	20	65		
	m/mm	4				
	$k/(N \cdot m^{-1})$	$\begin{cases} k_{smmax}^{(1)} = 1.728 \times 10^{9} \\ k_{smmin}^{(1)} = 1.017 \times 10^{9} \\ \end{cases}$ $\begin{cases} k_{rmmax}^{(1)} = 1.969 \times 10^{9} \\ k_{rmmin}^{(1)} = 1.084 \times 10^{9} \end{cases}$				
	$\alpha/(^{\circ})$	21.664				
	E/mm	0.014				
	Ν	3				

第6期

	基本参数	太阳轮	行星轮	内齿轮	行星架	
第 2 级	M/kg	14.301	3.815	87.029	38.165	
	$I/(\mathrm{kg} \cdot \mathrm{m}^2)$	0.031	0.007	3.379	0.559	
	$K_{\rm t}/({\rm N} \cdot {\rm m}^{-1})$	0.000	0.000	_	0.000	
	z	27	21	69	—	
	m/mm	5				
	$k/(N \cdot m^{-1})$	$\begin{cases} k_{symax}^{(2)} = 2.465 \times 10^{9} \\ k_{symin}^{(2)} = 1.452 \times 10^{9} \\ k_{romax}^{(2)} = 2.752 \times 10^{9} \\ k_{romax}^{(2)} = 1.511 \times 10^{9} \end{cases}$				
	$\alpha/(^{\circ})$	21.263				
	E/mm	0.015				
	Ν	4				
	M/kg	24.606	9.196	310.075	92.703	
	$I/(\mathrm{kg} \cdot \mathrm{m}^2)$	0.059	0.033	16.377	1.863	
	$K_{\rm t}/({\rm N} \cdot {\rm m}^{-1})$	0.000	0.000	$5 imes 10^9$	0.000	
	z	24	24	72	—	
衒	m/mm	6				
第 3级	$k/(N \cdot m^{-1})$	$\begin{cases} k_{symax}^{(3)} = 3.159 \times 10^{9} \\ k_{symin}^{(3)} = 1.860 \times 10^{9} \\ k_{rrmax}^{(3)} = 3.569 \times 10^{9} \\ k_{rymin}^{(3)} = 1.954 \times 10^{9} \end{cases}$				
	$\alpha/(^{\circ})$	21.059				
	\mathbf{F} /mana	0.016				
	E/ IIIII		0.0	10		

注:M为质量,I为转动惯量,K,为切向支承刚度,z为齿数,m为模 数,k为啮合刚度,α为啮合角,E为啮合误差幅值,N为行星轮个数。

由于盾构机主减速器的三级内齿轮是固结在一起的,其总质量是各级质量之和,即 501.589 kg。其总转动惯量为各级转动惯量之和,即 22.203 kg•m²。 式(1)的特征值问题为

 $\boldsymbol{\omega}_i^2 \boldsymbol{M} \boldsymbol{\varphi}_i = \boldsymbol{K} \boldsymbol{\varphi}_i (i = 1, 2, \cdots, 18),$

(2)

式中, ω_i 为系统第i 阶固有频率; φ_i 为相应的第i 阶 振型,且有

$$egin{aligned} & m{arphi}_{i} = \left[m{arphi}_{k}^{(1)}, m{arphi}_{i}^{(1)}, m{arphi}_{il}^{(1)}, m{arphi}_{il}^{(2)}, m{arphi}_{il}^{(1)}, m{arphi}_{il}^{(2)}, m{arphi}_{k}^{(2)}, m{arphi}_{il}^{(2)}, m{arphi$$

由于啮合刚度 $k_m^{(i)}$ 、 $k_{sn}^{(i)}$ 的时变性,啮合刚度矩阵 K 为周期性变系数矩阵,这样由式(2)求得系统的各阶固有频率及其振型也是随时间的变动量。以第一 级传动的第一路太阳轮齿根与行星轮齿顶刚进入啮 合时作为计时起点,得出第一阶非零固有频率 f_4 随时间的变化曲线,如图 3 所示。

图 3 第一阶固有频率 f₄ 随时间变化曲线

可见,系统的固有频率呈现出与啮合刚度类似的矩形波的变化规律。第一阶非零固有频率变动幅度较小,在474.4~474.6 Hz之间。为不失一般性,任取t=0.01 s、0.03 s、0.05 s、0.07 s几个时间点,通过求解(2)式,得到系统在各个时间点对应的各阶固有频率及相应的振型。经对比发现在各个时间点,系统单根固有频率均有12个,对应有12阶振型;无二重根固有频率;三重根固有频率均有2个,对应有6阶振型,总共有18阶固有频率,如表2所示;相应的各阶振型如表3所示。由于振型数较多,仅给出各振动模式中的一阶振型。

表 2 系统各阶固有频率

m	f/Hz
1	$f_4 = 474.4, f_5 = 2\ 630.4, f_6 = 3\ 433.5, f_7 = 3\ 836.7,$ $f_{11} = 5\ 112.6, f_{12} = 6\ 090.9, f_{13} = 6\ 294.0, f_{14} = 6$ $580.7, f_{15} = 7\ 418.8, f_{16} = 7\ 661.2, f_{17} = 7\ 738.5, f_{18}$ $= 7\ 940.3$
2	_
3	$f_{1,2,3} = 0, f_{8,9,10} = 4$ 223.6

注:m为重根数,f为各阶固有频率。

30

表 3 系统各阶振型					
模	刚体	扭转	行星轮	第一级	第二级
式	运动	振动	振动	振动	振动
f	f_1	f_7	f_9	f_{15}	f_{11}
$arphi_{i ext{c}}^{(1)}$	-0.0097	0.0016	0.000 0	0.000 2	0.000 0
$arphi_{i ext{s}}^{(1)}$	-0.035 0	-0.0037	0.000 0	-0.0010	0.000 0
$arphi^{(1)}_{i1}$	-0.021 9	0.001 9	0.000 0	-0.0051	0.000 0
$arphi_{i2}^{(1)}$	-0.021 9	-0.0036	0.000 0	0.531 7	0.000 0
$arphi^{(1)}_{i3}$	-0.021 9	-0.0037	0.000 0	-0.5167	0.000 0
$arphi_{i\mathrm{c}}^{(2)}$	-0.003 1	0.0210	0.000 0	0.000 0	-0.002 3
$\varphi_{i\mathrm{s}}^{(2)}$	-0.011 0	-0.0892	0.000 0	0.000 0	0.032 7
$arphi^{(2)}_{i1}$	-0.007 1	-0.147 5	0.000 0	0.000 0	0.130 1
$arphi^{(2)}_{i2}$	-0.007 1	-0.0758	0.000 0	0.000 0	0.049 4
$\varphi_{i3}^{(2)}$	-0.007 1	-0.075 8	0.000 0	0.000 0	0.049 3
$\varphi_{i4}^{(2)}$	-0.007 1	-0.1338	0.000 0	0.000 0	-0.328 5
$arphi_{ m ic}^{(3)}$	0.014 9	0.000 3	0.000 0	0.000 0	0.000 0
$\varphi_{i\mathrm{s}}^{(3)}$	0.059 5	-0.0017	0.000 0	0.000 0	0.000 0
$arphi^{(3)}_{i1}$	0.029 8	-0.001 2	-0.0217	0.000 0	0.000 0
$\varphi_{i2}^{(3)}$	0.029 8	-0.001 2	-0.116 9	0.000 0	0.000 0
$\varphi_{i3}^{(3)}$	0.029 8	-0.001 2	0.125 7	0.000 0	0.000 0
$\varphi_{i4}^{(3)}$	0.029 8	-0.001 2	0.013 0	0.000 0	0.000 0
$arphi_{i\mathrm{r}}$	0.000 0	0.000 9	0.000 0	0.000 0	0.000 0

由上述振型结果可知,系统存在如下 5 种振动 模式

1)刚体运动模式。对应于系统前三阶固有频率 为零,即 f_{1,2,3}=0。系统中各构件作刚体运动,且其 角位移满足行星传动的传动比关系。

2)扭转振动模式。该模式只发生在第三级行星 传动上。在单根固有频率对应的几阶振型中,各级 的中心构件及行星轮均作扭转振动,且只有第三级 传动中各行星轮的振动状态相同。

3)行星轮振动模式。该模式只发生在第三级行 星传动上。在三重根固有频率,即 *f*_{8,9,10} = 4 223.6 Hz 对应的 3 种振型中,只有第三级行星传动的 4 个 行星轮在振动,且振型中各分量的代数和为零。

4)第一级传动振动模式。在单根固有频率 f₁₅ 对应的振型中,只有第一级传动的中心构件及行星 轮发生振动;第二、三级传动的各构件均不振动。

5)第二级传动振动模式。在单根固有频率 f₁₁和 f₁₄对应的 2 种振型中,只有第二级传动的中心构件及 行星轮发生振动;第一、三级传动的各构件均不振动。

3 动态响应分析

由于盾构机在掘进过程中所受的外载荷为随机 载荷,为简化分析,用实测载荷谱折算出的当量载荷 作为系统所受的外载荷。经计算, $T_{eq} = 1$ 489 N•m。 此时外激振力列阵 T 为恒定的;而在内激振力列阵 F 中由于含有时变啮合刚度 $k_{sn}^{(i)}$ 、 $k_{m}^{(i)}$ 及啮合误差 $e_{sn}(t)^{(i)}$ 、 $e_{m}(t)^{(i)}$,因此是时变的。

3.1 内部激励的数学描述

系统的内部激励主要是由时变啮合刚度和啮合 误差引起的。其中,时变啮合刚度按矩形波规律变 化,并可近似处理为傅里叶级数的形式;啮合误差可 表达为正弦函数的形式^[15]。由于盾构机主减速器 为串联的三级行星齿轮传动,除了每级传动中各路 啮合传动的啮合刚度和啮合误差之间存在着相位差 外,各级传动之间由于初始啮合位置的不同也会对 啮合刚度和啮合误差的相位带来影响。若以第一级 传动的第一路太阳轮齿根与行星轮齿顶刚进入啮合 时作为相位计时零点,则第一级传动的外啮合及内 啮合的啮合刚度分别为

$$k_{sn}^{(1)} = \bar{k}_{sn}^{(1)} + 2C_{\epsilon}^{(1)} \sum_{i=1}^{\infty} B_{i}^{(1)} \cos(i\omega^{(1)} t + \gamma_{sn}^{(1)})$$

$$k_{rn}^{(1)} = \bar{k}_{rn}^{(1)} + 2C_{\epsilon}^{'(1)} \sum_{i=1}^{\infty} B_{i}^{'(1)} \cos(i\omega^{(1)} t + \gamma_{rn}^{(1)} + \gamma_{sr}^{(1)}) \int_{0}^{\infty} B_{i}^{'(1)} \cos(i\omega^{(1)} t + \gamma_{sn}^{(1)} + \gamma_{sn}^{(1)}) \int_{0}^{\infty} B_{i}^{'(1)} \cos(i\omega^{(1)} t + \gamma_{sn}^{(1)} + \gamma_{sn}^{(1)}) \int_{0}^{\infty} B_{i}^{'(1)} \cos(i\omega^{(1)} t + \gamma_{sn}^{(1)} + \gamma_{sn}^{(1)}) \int_{0}^{\infty} B_{i}^{'(1)} \sin(i\omega^{(1)} t + \gamma_{sn}^{(1)} + \gamma_{sn}^{(1)}) \int_{0}^{\infty} B_{i}^{'(1)} \sin(i\omega^{(1)} t + \gamma_{sn}^{(1)} + \gamma_{sn}^{(1)}) \int_{0}^{\infty} B_{i}^{'(1)} \sin(i\omega^{(1)} t + \gamma_{sn}^{(1)} + \gamma_{sn}^{(1)} + \gamma_{sn}^{(1)} + \gamma_{sn}^{(1)}) \int_{0}^{\infty} B_{i}^{'(1)} \sin(i\omega^{(1)} t + \gamma_{sn}^{(1)} + \gamma$$

式中, $\bar{k}_{m}^{(i)}$ 、 $\bar{k}_{sn}^{(i)}$ (*i*=1,2,3)分别为第*i*级第*n*路内、外 啮合刚度的平均值, $C_{\varepsilon}^{(i)}$ 、 $C_{\varepsilon}^{(i)}$ 为小参数^[14], $B_{i}^{(i)}$ 、 $B_{i}^{(i)}$ 为内、外啮合的第*i*阶谐波幅值, $\gamma_{m}^{(i)}$ 、 $\gamma_{sn}^{(i)}$ 分别 为第*i*级第*n*路内、外啮合的初相位, $\gamma_{sr}^{(i)}$ 为第*i*级 内、外啮合的相位差, $\omega^{(i)}$ 为各级啮合频率,各符号的 详细定义参见文献[14]。各级行星传动的初始安装 位置如图 4 所示。

根据几何关系,第二级传动第一路外啮合与第 一级传动第一路外啮合之间的相位差为

$$\Delta \gamma_{21} = rac{z_{
m p}^{(2)}}{z_{
m s}^{(2)}} \gamma_2 - rac{z_{
m p}^{(1)}}{z_{
m s}^{(1)} i_1} \gamma_1$$
 .

第三级传动第一路外啮合与第一级传动第一路 外啮合之间的相位差为

$$\Delta \gamma_{31} = rac{z_{
m p}^{(3)}}{z_{
m s}^{(3)}} \gamma_3 - rac{z_{
m p}^{(1)}}{z_{
m s}^{(1)} i_1 i_2} \gamma_1 \, ,$$

其中,

$$\begin{split} \gamma_{i} &= \arccos\left(\frac{r_{1}^{(i)}}{r_{p_{a}}^{(i)}}\right) - \alpha_{s}^{(i)} - \left\{\frac{\pi}{2z_{p}^{(i)}} + \frac{2x_{p}^{(i)}\tan\alpha}{z_{p}^{(i)}} + \right\},\\ &\quad \text{inv}\alpha - \text{in}v\left[\arccos\left(\frac{r_{1}^{(i)}}{r_{p_{a}}^{(i)}}\right)\right]\right\} - \\ &\quad \text{mod}\left(\frac{z_{p}^{(i)}}{2}\right) \cdot \frac{\pi}{z_{p}^{(i)}}(i = 1, 2, 3)\,, \end{split}$$

式中,mod 表示取余数运算,r⁽ⁱ⁾_{pa}、z⁽ⁱ⁾_p、x^(j)分别为各 级行星轮齿顶圆半径、齿数和变位系数,α为齿形 角。设z⁽ⁱ⁾为各级太阳轮的齿数,则第二级及第三 级传动的外啮合及内啮合的啮合刚度分别为

$$k_{sn}^{(2)} = \overline{k}_{sn}^{(2)} + 2C_{\varepsilon}^{(2)} \sum_{i=1}^{\infty} B_{i}^{(2)} \cos(i\omega^{(2)}t + \gamma_{sn}^{(2)} + iz_{s}^{(2)} \Delta\gamma_{21}) \\ k_{rn}^{(2)} = \overline{k}_{rn}^{(2)} + 2C_{\varepsilon}^{'(2)} \sum_{i=1}^{\infty} B_{i}^{'(2)} \cos(i\omega^{(2)}t + \gamma_{rn}^{(2)} + \gamma_{sr}^{(2)} + iz_{s}^{'(2)} \Delta\gamma_{21}) \\ k_{sn}^{(3)} = \overline{k}_{sn}^{(3)} + 2C_{\varepsilon}^{(3)} \sum_{i=1}^{\infty} B_{i}^{(3)} \cos(i\omega^{(3)}t + \gamma_{sn}^{(3)} + iz_{s}^{'(3)} \Delta\gamma_{31}) \\ k_{rn}^{(3)} = \overline{k}_{rn}^{(3)} + 2C_{\varepsilon}^{'(3)} \sum_{i=1}^{\infty} B_{i}^{'(3)} \cos(i\omega^{(3)}t + \gamma_{sn}^{(3)} + \gamma_{sr}^{'(3)} + iz_{s}^{'(3)} \Delta\gamma_{31}) \\ \end{pmatrix}^{\circ}$$

图 4 各级行星传动初始安装位置图

同样地,可以得出各级传动的啮合误差函数。 第1级为

$$e_{sn}(t)^{(1)} = E_{sn}^{(1)} \sin(\omega^{(1)}t + \gamma_{sn}^{(1)}) \\ e_{rn}(t)^{(1)} = E_{rn}^{(1)} \sin(\omega^{(1)}t + \gamma_{rn}^{(1)} + \gamma_{sr}^{(1)})$$

$$\hat{\mathfrak{B}} 2 \mathfrak{W} \mathfrak{H}$$

 $e_{sn}(t)^{(2)} = E_{sn}^{(2)} \sin(\omega^{(2)} t + \gamma_{sn}^{(1)} + z_s^{(2)} \Delta \gamma_{21})$ $e_{rn}(t)^{(2)} = E_{rn}^{(2)} \sin(\omega^{(2)} t + \gamma_{rn}^{(1)} + \gamma_{sr}^{(1)} + z_s^{(2)} \Delta \gamma_{21})$ $\hat{\mathfrak{B}} 3 \mathfrak{W} \mathfrak{H}$

$$e_{sn}(t)^{(3)} = E_{sn}^{(3)} \sin(\omega^{(3)} t + \gamma_{sn}^{(3)} + z_s^{(3)} \Delta \gamma_{31}) \\ e_{rn}(t)^{(3)} = E_{rn}^{(3)} \sin(\omega^{(3)} t + \gamma_{rn}^{(3)} + \gamma_{sr}^{(3)} + z_s^{(3)} \Delta \gamma_{31}) \Big]^{\circ}$$

式中: E⁽ⁱ⁾、E⁽ⁱ⁾、B⁽ⁱ⁾分别为第 *i* 级传动第 *n* 路内、外啮合误差的幅值; 其他符号意义同前。

3.2 系统的动态响应求解

对于式(1)所示二阶振动微分方程组采用四阶 五级变步长 Runge-Kutta 法直接求解,获得系统各 运动构件的时域响应历程。图 5 为盾构机主减速器 三级行星传动系统各级太阳轮的扭转振动角位移的 时域响应,可见,各级太阳轮基本都在各自的平衡位 置附近做微幅振动。其他各构件也基本在各自的平 衡位置附近振动,在此不再诸一列出。

由于啮合刚度及啮合误差的时变性,使行星传 动系统各齿轮副间产生动态啮合力。各级传动的太 阳轮-行星轮及行星轮-内齿轮之间的动态啮合力 F⁽ⁱ⁾、F⁽ⁱ⁾可分别表示为

$$\begin{cases} F_{sn}^{(i)} = k_{sn}^{(i)} \left(r_{s}^{(i)} \theta_{s}^{(i)} - r_{n}^{(i)} \theta_{n}^{(i)} - r_{c}^{(i)} \theta_{c}^{(i)} \cos_{\alpha} \right)^{(i)} + e_{sn}(t)^{(i)} \right), (i = 1, 2, 3), \\ F_{rn}^{(i)} = k_{rn}^{(i)} \left(-r_{r}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{n}^{(i)} - r_{c}^{(i)} \theta_{c}^{(i)} \cos_{\alpha} \right)^{(i)} + e_{rn}(t)^{(i)} \right), (i = 1, 2, 3), \\ F_{rn}^{(i)} = h_{rn}^{(i)} \left(-r_{r}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} - r_{c}^{(i)} \theta_{c}^{(i)} \cos_{\alpha} \right)^{(i)} + e_{rn}(t)^{(i)} \right), (i = 1, 2, 3), \\ F_{rn}^{(i)} = h_{rn}^{(i)} \left(-r_{r}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} - r_{c}^{(i)} \theta_{c}^{(i)} \cos_{\alpha} \right)^{(i)} + e_{rn}(t)^{(i)} \right), (i = 1, 2, 3), \\ F_{rn}^{(i)} = h_{rn}^{(i)} \left(-r_{r}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} - r_{c}^{(i)} \theta_{c}^{(i)} \cos_{\alpha} \right)^{(i)} + e_{rn}(t)^{(i)} \right), (i = 1, 2, 3), \\ F_{rn}^{(i)} = h_{rn}^{(i)} \left(-r_{r}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} - r_{c}^{(i)} \theta_{c}^{(i)} \cos_{\alpha} \right)^{(i)} + e_{rn}(t)^{(i)} \right), (i = 1, 2, 3), \\ F_{rn}^{(i)} = h_{rn}^{(i)} \left(-r_{r}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} - r_{c}^{(i)} \theta_{c}^{(i)} \cos_{\alpha} \right)^{(i)} + e_{rn}(t)^{(i)} \right), (i = 1, 2, 3), \\ F_{rn}^{(i)} = h_{rn}^{(i)} \left(-r_{r}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} - r_{c}^{(i)} \theta_{c}^{(i)} \cos_{\alpha} \right)^{(i)} + e_{rn}(t)^{(i)} \right), \\ F_{rn}^{(i)} = h_{rn}^{(i)} \left(-r_{r}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{c}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} \right), \\ F_{rn}^{(i)} = h_{rn}^{(i)} \left(-r_{r}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} \right), \\ F_{rn}^{(i)} = h_{rn}^{(i)} \left(-r_{r}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} \right), \\ F_{rn}^{(i)} = h_{rn}^{(i)} \left(-r_{r}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_{r}^{(i)} \right), \\ F_{rn}^{(i)} = h_{rn}^{(i)} \left(-r_{r}^{(i)} \theta_{r}^{(i)} + r_{n}^{(i)} \theta_$$

因系统各构件振动位移响应、时变啮合刚度、啮 合误差均已获得,所以可方便地得到各级传动中齿 轮副之间动态啮合力的时域响应曲线,如图 6 和图 7 所示。

图 7 各级行星轮--内齿轮间动态啮合力时域响应

从图中可见,第一、二级传动的内、外啮合啮合 力的平均值大约在10~20 kN 左右,较第三级的平 均值(70 kN 左右)变化不明显,这是由于第二级传 动虽经第一级传动的减速,使太阳轮上的输入扭矩 有所增大,但其行星轮个数较第一级多了一个,使得 每一路内、外啮合分担的扭矩有所减小,因而较第一 级传动的啮合力的增幅不大。而第三级与第二级在 行星轮个数相同的情况下,经减速增矩后,其啮合力 的增加较大。同时,第一、二级传动的内、外啮合力 的振动幅值较大,在40~70 kN 左右;而第三级的啮 合力的振动幅值较小,在 10~20 kN 左右。通过快 速傅里叶变换,得到各级传动的内、外啮合力的频谱 图,如图 8 和图 9 所示。

图 8 各级太阳轮--行星轮间动态啮合力频谱图

第6期

图 9 各级行星轮--内齿轮间动态啮合力频谱图

由于在计算时变啮合刚度时,取至傅里叶级数 的前 20 项。由图 8 和图 9 可知,各级传动动态啮合 力的频谱图都较为复杂,含多种频率成份,既包含各 级的基频,即啮合频率值(第一级为 344.7 Hz,第二 级为 102.9 Hz,第三级为 26.9 Hz),也包含其他倍 频值。其中,第一、二级传动的激振力频率主要出现 在低频段,接近系统的第一阶固有频率的范围 (474.4~474.6 Hz),引起系统谐振,使内、外啮合动 态啮合力的振动幅值较大;而第三级传动的激振力 频率主要出现在高频段,距系统第一阶固有频率较 远,所以其动态啮合力的振动幅值较小。在齿轮强 度计算中常引入动载系数来考虑因齿轮振动致使啮 合力增大而产生内部附加动载荷的影响。动载系数 被定义为动态啮合力与静态啮合力的比值,本文取 该比值的最大值作为动载系数,即

$$K_{\rm V}^{(i)} = \max rac{F_{j_0}^{(i)}}{F_0^{(i)}} (i = 1, 2, 3; j = {
m s, r}),$$

式中,K⁽ⁱ⁾、F⁽ⁱ⁾_{jn}、F⁽ⁱ⁾分别为各级传动的动载系数、动态啮合力和静态啮合力。

据此,计算出各级传动的动载系数,如表 4 所示。

474 月1	动载系数			
级加	外啮合	内啮合		
第一级	3.146 219	3.160 372		
第二级	2.892 765	2.924 606		
第三级	1.059 992	1.135 152		

表 4 各级传动动载系数

可见,由动载系数可以反映出各级内、外啮合动 态啮合力的变动,即产生内部附加动载荷的情况。

4 结 论

1)考虑到多级行星传动各级之间由于初始啮合 位置的不同使啮合刚度、啮合误差产生的相位差,以 及各构件支承刚度、时变啮合刚度、啮合误差等影响 因素,建立了盾构机主减速器三级行星轮系纯扭转 动力学模型并进行了求解,揭示了该行星传动系统 的动力学特性。

2)模态分析表明,三级行星传动与单级行星传 动有着类似而又不同的振动模式:扭转振动模式和 行星轮振动模式只发生在第三级传动上;同时会发 生第一、二级传动单独的振动模式,这是盾构机刀盘 驱动三级行星传动独特的振动特点。

3)由各级齿轮副间动态啮合力的时域响应及频 谱图可知,中、高速级传动的激振力频率接近系统的 低阶固有频率,易引起系统谐振,产生较大的内部附 加动载荷。因此,在齿轮强度设计时,应特别注意 中、高速级传动动载系数的计算。

参考文献:

- [1] Tanimoto C, Nakane T, Tsusaka K, et al. A study on the evaluation of excavation rate and geological condition through the TBM excavation index [J]. Journal of the Society of Materials Science, 2006, 55(8):777-784.
- [2] Vicenzi I, Pedrazzini S, Ferrari A, et al. Deep tunnelling in hardrock with large diameter TBM: what's up? an experience from the Gotthard Base Tunnel [C] // Proceedings of the 33rd ITA-AITES World Tunnel Congress, May 5-10, 2007, Prague, Czech Republic. London: Tayler & Francis Group, 2007: 267-272.
- [3] Kahraman A. Natural modes of planetary gear trains [J]. Journal of Sound and Vibration,1994,173(1):125-130.

34

- [4] Hbaieb R, Chaari F, Fakhfakh T, et al. Dynamic stability of a planetary gear t rain under the influence of variable meshing stiffnesses [J]. Proceedings of the I MECH E Part D: Journal of Automobile Engineering, 2006,220(12):1711-1725.
- [5] Ambarisha V K, Parker R G. Suppression of planet mode response in planetary gear dynamics through mesh phasing [J]. ASME Journal of Vibration and Acoustics, 2006, 128(2):133-142.
- [6] Ambarisha V K, Parker R G. Nonlinear dynamics of planetary gears using analytical and finite element models[J]. Journal of Sound and Vibration, 2007, 302(3):577-595.
- [7] Al-Shyyab A, Kahraman A. A non-linear dynamic model for planetary gear sets[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2007, 221(4):567-576.
- [8]杨建明,张策. 行星齿轮传动的固有频率对设计参数的 灵敏度分析[J]. 机械设计,2001,18(4):40-43.
 YANG Jianming, ZHANG Ce. Sensitivity analysis on designing parameters offected by natural frequency of planetary transmission[J]. Journal of Machine Design, 2001,18(4):40-43.
- [9] 宋轶民,许伟东,张策,等. 2K-H 行星传动的修正扭转 模型建立与固有特性分析[J]. 机械工程学报,2006,42 (5):16-21.

SONG Yimin, XU Weidong, ZHANG Ce, et al. Modified torsional model development and natural characteristics analysis of 2K-H epicyclic gearing [J]. Chinese Journal of Mechanical Engineering, 2006, 42(5):16-21.

[10] 张俊,宋轶民,王建军. 计入齿圈柔性的直齿行星传动 动力学建模[J]. 机械工程学报,2009,45 (12):29-36. ZHANG Jun, SONG Yimin, WANG Jianjun. Dynamic modeling for spur planetary gear transmission with flexible ring gear[J]. Chinese Journal of Mechanical Engineering, 2009, 45(12): 29-36.

- [11] 段福海,胡青春,谢存禧. 钢/塑齿轮组合行星传动的振动特性[J]. 机械工程学报,2010,46(1):62-67.
 DUAN Fuhai, HU Qingchun, XIE Cunxi. Dynamic behavior for planetary geared system with plastic gear [J]. Journal of Mechanical Engineering, 2010,46(1): 62-67.
- [12] 赵永强,李瑰贤,常山,等. 船用大功率两级人字齿行星 传动系统的振动特性研究[J]. 船舶力学,2009,13(4): 621-627.

ZHAO Yongqiang, LI Guixian, CHANG Shan, et al. Study on vibration characteristics of two stage double helical tooth planetary gear trains used in ship with high power[J]. Journal of Ship Mechanics,2009,13(4):621-627.

- [13] Al-Shyyab A, Alwidyan K, Jawarneh A, et al. Nonlinear dynamic behaviour of compound planetary gear trains; model formulation and semi-analytical solution
 [J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2009,223:199-210.
- [14] 李润方,王建军.齿轮系统动力学:振动、冲击、噪声 [M].北京:科学出版社,1997.
- [15] 王旭东,林腾蛟,李润方,等.风力发电机组齿轮系统内 部动态激励和响应分析[J]. 机械设计与研究,2006, 22(3):47-49.

WANG Xudong, LIN Tengjiao, LI Runfang, et al. The internal dynamic excitation and response analysis of the gear system for the wind-driven generator[J]. Machine Design and Research, 2006, 22(3):47-49.

(编辑 詹燕平)