架空输电线路纵向不平衡张力的精确计算

任德顺1,任 杰2

(1.四川电力设计咨询有限责任公司,成都 610016;2.四川省电力公司检修公司,成都 610041)

摘 要:不均匀覆冰(或不均匀风)会使直线塔两侧出现不平衡张力,导致铁塔受到弯矩和扭矩 或绝缘子串上拔,产生永久性事故。采用悬链线模型精确计算杆塔的不平衡张力,是重覆冰地区架 空输电线路设计的基础。本文介绍了求解上述问题数值的精确计算方法,通过与规程对比,表明计 算方法正确。

关键词:架空线路;不平衡张力;精确计算;重覆冰地区

输电线路在架线竣工时,可以认为悬垂串处于 铅垂位置,直线杆塔不承受电线的纵向张力。但在 正常运行中,由于以下几种情况,会使耐张段内各档 距架空线的张力相差悬殊,致使直线杆塔承受较大 的不平衡张力^[1-2]。

1) 耐张段中各档档距、高差相差悬殊,当气象条 件变化后,引起各档张力不等。

2)耐张段中各档不均匀覆冰或不同时脱冰或不 均匀风,因各档比载不同引起张力不等。

3)线路在检修时,采取先松下某悬点的电线或 后挂某悬点的电线,造成两档合一档,将引起与相邻 各档张力不等。

4) 耐张段内某档进行飞车、绝缘爬梯等作业,集 中荷载引起的不平衡张力。

5)在高差很大的山区,尤其是重冰区的连续倾 斜档,山上档和上下档的张力不等。

以上各种情况中,耐张段各档不均匀覆冰或不 同期脱冰是常见的较严重情况,尤其是重冰区。不 均匀脱(覆)冰所产生的不平衡张力,有时可成为直 线杆塔强度和稳定性设计的控制条件。在重冰区的 连续倾斜档中,不平衡张力使悬垂串偏移的结果,可 能造成导线对横担的闪络,即绝缘子串上拔^[3-4]。

计算连续档电线张力,常用的计算方法有平抛 物线法、斜抛物线法和悬链线法^[2]。

对于重冰区,只有采用悬链线法才能达到最高的精度。本文对悬链线法进行介绍,并编制了计算 程序,该计算方法同样适用于轻冰区的计算。

1 档距变化量与架空线应力的关系

文章编号:1000-582X(2014)S2-232-04

在送电线路中,电线是以杆塔为支持物而悬挂 起来的,我们忽略电线材料的刚性,将电线看成是沿 线长均匀分布的绳索,其所形成的状态为"悬链线"。 架线施工时,补偿架空线初伸长(降温 Δt)后的连续 档架线应力(各档水平应力)为 σ_0 ,比载为 γ_1 ,架线气 温为 t_0 。竣工后悬垂串处于中垂位置,第*i*档的档 距为 L_{10} 、高差为 h_0 ,参见图 1。此时第*i*档的悬挂 曲线长度的计算方法如下:

图 1 不均匀覆冰示意图

悬链线公式^[2]: $L_{i0} = \sqrt{\frac{4\sigma_0^2}{\gamma_1^2}sh^2\frac{\gamma_1L_{i0}}{2\sigma_0} + h_{i0}^2}$ (1)

线路运行过程中,气象条件发生变化,气温变为 t,比载变为 γ_i ,假定初伸长已释放完毕,各档水平应 力为 σ_{i0} 。,由于各档水平应力 σ_{i0} 不等,悬垂串偏移使 档距增大 ΔL_i ,高差变化 Δh_i ,高差角变为 β_i ,此时 第i档的悬挂曲线长度为:

$$\Delta L_{i} = \sqrt{\frac{4\sigma_{i0}^{2}}{2}sh^{2} \frac{\gamma_{i}(L_{i0} + \Delta L_{i1})}{2\sigma_{i0}} + (h_{i0} + \Delta h_{i1})^{2}} \times$$

收稿日期:2014-10-10

(2)

$$\left[1 - \frac{\sigma_{i0}}{E \cos \beta_i}\right] + \alpha (t - t_0 + \Delta t)$$
$$L_i - L_{i0}$$

共有 n 档,可列出 n 个方程式。

对于整个耐张段,由于两端为耐张杆塔,所以各 档档距增量 ΔL_i 的总和应为零。

计算中的有关物理量含义如下。

n:耐张段内总档数

Li0:悬垂串处于中垂位置时第 i 档的档距, m

 ΔL_{a} :不均匀覆冰工况时第 i 档的档距变化量, 档距增加取正值,m

*h*_{i0}:悬垂串处于中垂位置时第 *i* 基塔与后侧塔 电线悬挂点高差(比后侧高时为正值),m

 Δh_{a} :不均匀覆冰工况时第 i 档绝缘子串偏移引起的高差增量,m

α:电线线膨胀系数,1/℃

E:电线弹性系数, N/mm^2

t₀:架线时温度,℃

 σ_0 :架线时每根电线水平应力, $N/(m \cdot mm^2)$

Δ*t*:架线时考虑初伸长降温的等值温度(取正 值),℃

γ1:架线时电线自重荷载,N/m

t,计算不均匀覆冰工况时温度,℃

 σ_{i0} :计算不均匀覆冰工况时第i档每根电线水平应力,N/(m•mm²)

γ_i:计算不均匀覆冰工况时第 i 档每根电线单位 荷载,N/m

 β_i :第 *i* 档的高差角, $tg(\beta_i) = (h_{i0} + \Delta h_{i1}) / (L_{i0} + \Delta L_{i1})$, 度

2 悬垂绝缘子偏移量与架空线应力的 关系

各档间应力不等时,悬垂串产生偏移。设悬垂 串为均布荷载的刚性直棒,则第*i*基杆塔的悬垂串 受力如图 2 所示。

图 2 悬垂绝缘子串受力图

图 2 中 G_i为悬垂串的垂向荷载,λ_i为其长度,架 空线作用于悬垂串下端的垂向荷载为 P_i,左右两档 架空线的不平衡张力差为 $A(\sigma_{(i+1)0} - \sigma_0)$,在此力作 用下悬垂串下端偏移量 δ_{i0} 。对悬垂串上端悬挂点 列力矩平衡方程式如下:

$$A(\sigma_{(i=1)0} - \sigma_0) \sqrt{\lambda_i^2 - \delta_i^2} = P_i \delta_i + G_i \frac{\delta_i}{2}$$

悬垂串偏移量与架空线应力的关系为:

$$\frac{\delta_i}{\sqrt{\lambda_i^2 - \delta_i^2}} = \frac{\sigma_{(i+1)0} - \sigma_{i0}}{\frac{G_i}{2\Lambda} + \frac{P_i}{\Lambda}}$$
(3)

后侧垂直档距:

$$a_i = rac{L_i}{2} + rac{\sigma_{i0}}{\gamma_i} \mathrm{arcsh} \, rac{h_i}{L_i}$$

前侧垂直档距:

$$b_i = rac{L_{i+1}}{2} - rac{\sigma_{(i+1)0}}{\gamma_{i+1}} \mathrm{arcsh}\,rac{h_{i+1}}{L_{i+1}}$$

其中 P_i 可由垂直档距的概念求出。假设架空 线比载 γ_i, γ_{i+1} 均沿斜档距分布,则:

$$P_i = A\Big(\sigma_{\scriptscriptstyle i0}\,sh\,\,rac{\gamma_{\scriptscriptstyle i}a_{\scriptscriptstyle i}}{\sigma_{\scriptscriptstyle io}} + \sigma_{\scriptscriptstyle (i+1)0}\,sh\,\,rac{\gamma_{\scriptscriptstyle i+1}b_{\scriptscriptstyle i}}{\sigma_{\scriptscriptstyle (i+1)0}}\Big)$$

计算中的有关物理量含义如下:

M:电线分裂根数

A:电线截面,mm²

 δ_i :不均匀覆冰工况时第 i 基直线杆塔的电线悬挂点偏移距离,m

λ_i:第 i 基直线杆塔悬垂串长度, m

G_i:不均匀覆冰工况时第 i 基直线杆塔悬垂串 重量,N

有风时,电线既有垂向荷载作用,又有横向荷载 作用,悬垂串除产生顺线路方向的偏移外,还产生横 向偏移 δ_{hi} ,使计算更为复杂。为简化计算,可假设 $\delta_{hi}=0, 0$ γ_i 应考虑风荷载的影响。

3 档距和高差变化量与悬垂串偏移量 的关系

耐张段两端为耐张杆塔,可以认为耐张绝缘子 偏移量为零,即 $\delta_0 = 0, \delta_n = 0$ 。其他各档的档距变化 量为:

$$\Delta L_1 = \delta_1 - \delta_0 = \delta_1$$

$$\Delta L_2 = \delta_2 - \delta_1 = \delta_2 - \Delta L_1, \delta_2 = \Delta L_2 + \Delta L_1$$

.....

 $\delta_i = \sum_{i=1}^i \Delta L_i$

所以:

$$\Delta h_i = (\lambda_i - \sqrt{\lambda_i^2 - \delta_i^2}) - (\lambda_{i-1} - \sqrt{\lambda_{i-1}^2 - \delta_{i-1}^2})$$
(5)

4 求解步骤

根据设计规范规定[3],重冰线路不均匀覆冰工

况按未断线、有不均匀冰、10 m/s风计算。

耐张段内共有 n-1 基直线杆塔,可以列出如式 式(3)、式(4)个 n-1个方程,按式(2)可列出 n 个方 程,共 3n-2个方程,已知 $\delta_0 = 0$,因此可以求解 σ_{i0} 、 ΔL_i 、 δ_i 共 3n-1个未知量。通过 VB 编程求解,步 骤如下:

假定一个 $\Delta L_1 = \delta_1$,已知 $\delta_0 = 0$,由式(5)求出 Δh_1 ,由式(2)求出 σ_{10} 。根据 σ_{10} 、 δ_1 ,由式(3)求出 σ_{20} 。再根据 σ_{20} 、假设 $\Delta h_2 = 0$,由式(2)求出 ΔL_2 、由 式(4) δ_2 。由式(5)求出 Δh_2 ,再由 Δh_2 ,求出 ΔL_2 、 δ_2 ,反复进行,直到 Δh_2 、 ΔL_2 、 δ_2 无明显变化。

根据 σ_{i0} 、假设 $\Delta h_i = 0$,按上述方法求出 ΔL_i 、 δ_i 、 Δh_i 。

••••

最终迭代结束目标:δ_n≈0。 流程图如下:

图 3 最大不平衡张力程序设计流程图

以不均匀覆冰工况下的纵向张力及档距变化计 算结果为基础,可以计算出不均匀脱冰时的导地线 弧垂,进而计算出导地线之间静态及动态接近距离, 为杆塔地线支架高度设计取值提供依据。同时依据 计算出的垂直荷载,可以检查是否超杆塔设计条件 或绝缘子串是否上拔。

上述计算方法同样适用于轻冰区的计算。

5 计算实例

1)为了检验上述方法的计算结果,与《重冰区架 空送电线路设计技术规定(1998 试行)》^[4]条文说明 的算例结果进行了对比(见表 1)。

计算条件:

连续 7 档,等档 距、无 高 差,第一档 覆 冰 率 20%,其余档覆冰率 100%;

不平衡张力百分数:以最大使用张力为基准;

LGJJ-300:N=2.5,串长 2.3 m

从表1对比可知,本文计算结果与规程算例结 果基本一致^[4],说明本文计算结果是可信的。二者 稍有差异可能与计算参数取值不同有关,比斜抛物 线计算值略大^[5]。

表 1 220 kV 线路直线塔不均匀覆冰不平衡张力百分数

까지	覆冰率 /%		规程	斜抛	本文
/mm		计算条件	算例	物线	计算值
			结果[4]	计算值[5]	(悬链线)
20 30	100/20	档距 450 m,	17.0%	17.2%	17.5%
	100/30 100/40 100/20	无高差	14.5%		15.1%
		导线 LGJJ-300	10 50/		19 00/
		$\lambda = 2.3 \text{ m}$	12.370		12.870
		怕距 350 m,	27.0%	25.3%	27.5%
	100/30	无高差	23.5%		23.0%
		导线 LGJJ-300			
	100/40	$\lambda = 2.3 \text{ m}$	19.0%		19.1%
40	100/20	档距 300 m,	38.5%	37.9%	39.1%
	100/30 100/40	无高差	32.0%		32.5%
		导线 LGJJ-300			
		$\lambda = 2.3 \text{ m}$	26.5%		26.8%

2)本文与《重覆冰架空输电线路设计技术规程》^[3]条文说明12.0.6表中的41算例结果进行了 计算结果对比,见表2。

表 2 500 kV 线路直线塔不均匀覆冰不平衡张力百分数

表 3 西昌变电站-沐川变电站 500 kV 线路某耐张段计算数据

冰区 /mm	覆冰率 /%	计管久供	规程	规程	本文
		(七档)	算例	规定	计算值
			结果[3]	最小值[3]	(悬链线)
10	100/20	档距 550 m,高	11.2%	10%	11.1%
	100/30	差 15%,导线	9.8%		9.6%
	100/40	$\sigma_{\rm m} = 10.59$	8.4%		8.2%
	100/50	λ=5.4 m 四分裂	7.0%		6.8%
15	100/20	档距 500 m,高	17.4%	15%	17.2%
	100/30	差 15%,导线	15.1%		14.8%
	100/40	$\sigma_{\rm m} = 10.59$	12.8%		12.6%
	100/50	λ=5.4 m 四分裂	10.7%		10.4%
20	100/20	档距 450 m,高	23.4%	25%	23.0%
	100/30	差 15%,导线	20.1%		19.8%
	100/40	$\sigma_{\rm m} = 10.59$	17.0%		16.7%
	100/50	λ=5.4 m 四分裂	14.0%		13.7%
	100/20	档距 400 m,高	24.6%	29%	24.2%
20	100/30	差 15%,导线	21.0%		20.5%
30	100/40	$\sigma_{\rm m} = 13.85$	17.7%		17.2%
	100/50	λ=5.4 m 四分裂	14.5%		14.1%
40	100/20	档距 400 m,高	36.2%	33%	35.6%
	100/30	差 15%,导线 A3/S3A-465/60	30.5%		30.0%
	100/40	$\sigma_{\rm m} = 15.04$	25.4%		24.9%
	100/50	λ=5.4 m 四分裂	20.8%		20.3%
50	100/20	档距 350 m,高	39.9%	38%	39.0%
	100/30	差 15%,导线 A3/S3A-465/60	33.5%		32.7%
	100/40	$\sigma_{\rm m} = 16.23$	27.9%		27.1%
	100/50	λ=5.4 m 四分裂	22.7%		22.1%

从表2对比可知,本文计算结果比规程算例值 小 0.1%~0.8%,与规程算例值非常接近。

影响直线塔不均匀覆冰不平衡张力计算结果的 因素主要有:各档覆冰厚度取值、耐张段的档数、档 距、高差、绝缘子金具串长度、架线张力(大高差按放 松后考虑)等,工程设计时需根据规程要求结合工程 具体条件进行计算。

3)工程计算实例。

西昌变电站一沐川变电站 500 kV 线路中^[6],有 一由4档组成的耐张段,通过40mm覆冰区,采用4 * A3/S3A-465/60 导线,计算条件及结果见表 3。

塔 号	N1	N2		N3		N4	N5
档距/m	305		320		300		650
高差/m	22.3		62.7		52.5	-	-132.5
覆冰率	0.2		0.2		0.2		1
串长/m		5.4		5.4		5.4	
串重/N		3 500		3 500		3 500	
冰厚/mm	13.04		13.04		13.04		40
串偏移/m		0.78		1.7		2.63	
张力/N/根	43 226		44 032		47 719		91 924
张力差(N/相))	3 227		14 745		136 420)
不平衡度(%)		0.91		4.14		38.32	
串长+弧垂/m	n 11.6		14.9		12.8		63.4
垂直荷重/N		19 720		42 008	:	241 678	;

从表 3 可以看出,虽然该耐张段只有 4 档,但 N4 塔的不平衡度已经达到 38.32%,超过规程规定 的最小值,需按不小干计算值进行铁塔设计;表中计 算出的"串长+弧垂"是检查该档交叉跨越的重要数 据;表中计算出的"垂直荷重"是检查该塔是否存在 上拔的重要数据。

结 论 6

1)本文所述的重冰区输电线路在不均匀覆冰工 况下的纵向张力计算方法,适合于用计算机进行数 值求解。经编制程序进行计算,并与规程对照,表明 计算方法是可靠的。

2)影响直线塔覆冰断线张力及不均匀覆冰不平 衡张力计算结果的因素很多,工程设计时应根据规 程要求结合工程具体条件进行计算。

3)以不均匀覆冰工况下的纵向张力及档距变化 计算结果为基础,可以计算不均匀脱冰时导地线之 间静态及动态接近距离,为杆塔地线支架高度设计 取值提供依据。同时依据计算出的垂直荷载,可以 检查是否超杆塔设计条件或绝缘子串是否上拔。

4)本文所述算法同样适用于轻冰区线路的相关 计算。

5)本方法在西昌变电站-沐川变电站 500 kV 线 路 20~50 mm 重冰区段设计中具体运用,收到了较 好的效果。

参考文献:

[1] 孟遂民. 架空输电线路设计[D]. 宜昌: 三峡大学, 2007.

- [2]张殿生.电力工程高压送电线路设计手册[M].北京:中 国电力出版社,2003.
- 「3] DL/T 5440—2009. 重覆冰架空输电线路设计技术规程 [S]. 北京:中国电力出版社,2009.
- 「4] 重冰区架空送电线路设计技术规定(1998 试行) [S]. 北京:中国电力出版社,1999.
- [5] 詹宗东,熊俊,吴吴. 覆冰纵向张力计算[J]. 四川电力技 术,2008,03:55-58.
- 「6] 四川电力设计咨询有限责任公司. 西昌变电站-沐川变 电站 500 千伏输电线路工程施工图设计[R]. 2010.

(编辑 吕建斌)