2015年10月

doi:10.11835/j.issn.1000-582X.2015.05.002

球团矿还原的动力学模型分析

伍成波,张江斌,吴乾江,岳 林

(重庆大学 材料科学与工程学院,重庆 400044)

摘 要:基于还原炉控温还原实验,通过分析 CO 和 H₂ 还原球团矿过程中的反应速率模型,提 出两种气体混合后还原球团矿的反应动力学模型,得到还原过程中阻力和反应速率随温度及还原 度的变化规律,得出结论:CO 还原球团矿时,内扩散阻力所占比例随着温度及还原度增加而变大; H₂ 还原球团矿时,内扩散属于速率控制环节;混合气还原球团矿时,反应速率随温度升高而增大, 温度低于 500 ℃时,CO 浓度增加,反应速率降低,而温度超过 500 ℃后,反应速率则随着 CO 浓度 的增加而增大;混合气反应速率模型的计算值与实验结果一致。

关键词:球团矿;反应速率;动力学模型;还原气 中图分类号:TF801 文献标志码:A 文章编号:1000-582X(2015)05-011-06

Analysis on reaction dynamics model of pellets

WU Chengbo, ZHANG Jiangbin, WU Qianjiang, YUE Lin

(College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P.R.China)

Abstract: Through analyzing the reaction rate model of CO and H_2 in the process of reducing pellets and based on experiments, the changes of resistance and reaction rate with the increase of temperature and reducibility is concluded respectively. Reaction rate model of gas mixture is concluded based on the two kinds of model. The proportion of internal diffusion resistance increases with the increase of temperature and reduction degree when pellets are reduced by carbon monoxide. Internal diffusion belongs to the rate control link when pellets are reduced by hydrogen. The reaction rate increases with temperature increasing while it decreases with carbon monoxide content increasing in the process of gas mixture reducing pellets when temperature is below 500 °C. It will increase with the increase of the carbon monoxide concentration while temperature is over 500 °C. Theoretical calculation value of gas mixture is consistent with the experimental results.

Key words: pellets; reaction rate; dynamics model; reducing gas

直接还原是将铁矿石在低于熔化温度下被直接还原成固态金属产品的炼铁技术,它有效地克服了传统 高炉炼铁高能耗、流程长等弱点,已成为钢铁冶炼技术的研究热点^[1-3]。根据还原剂形态的不同,可将直接还 原分为气基法和煤基法。气基竖炉炼铁产量达到了直接还原铁总产量的90%以上^[2]。而竖炉内还原铁矿石 的主要成分则是 H₂ 及 CO。采用 CO 及 H₂ 来还原铁矿,还原气循环利用率高,在适当情况下还可以增加 H₂ 含量、降低 CO 含量,减少了 CO₂ 的排放^[4-5]。H₂ 和 CO 还原铁矿石过程中的反应动力学,是当前研究竖 炉含铁球团还原反应过程的重要课题^[6-17]。而这两种气体混合后竖炉内还原铁块石的动力学模型还未见报 道^[9,11,13,14]。笔者结合竖炉内球团矿还原模拟实验,通过分析 CO 和 H₂ 还原球团矿过程中的反应速率,提出

收稿日期:2015-03-15

作者简介: 伍成波(1965-), 男, 重庆大学副教授, 主要从事炼铁新技术及新工艺等研究, (E-mail) wuchengbo@cqu. edu.cn。

混合气还原时的反应动力学模型,为研究竖炉内球团矿还原反应动 力学提供一定的理论参考。

1 实验原料及装置

实验中选用的是某钢厂进口球团矿,其成分见表 1。图 1 为还原 炉及相应装置的示意图,还原炉为三段式控温反应炉。CO 的指标纯 度为 99.5%,H₂ 纯度为 99.9%,每次实验球团矿用量约2.0 kg。实验 开始时,先通入 N₂ 约 3 min,在还原炉升温的同时通入还原气,通过改 变料层温度停留时间来模拟实际竖炉内的温度变化。还原过程中,电 子天平计算失重量,测量达到一定还原度时所需的时间,达到指定还 原要求后,改通 N₂ 约 3 min 并降温至室温状态。采用全自动氮吸附 仪测定样品气孔状态,结合样品真体积计算得到气孔率。实验过程 中,保持气体流量 0.627 m³/h,常压操作。

Fig.1 The test device schematic diagram

表 1 球团矿成分及含量 Table 1 Chemical compositions and content of the pellets

成分	TFe	$\mathrm{Fe}_{_{2}}\mathrm{O}_{_{3}}$	FeO	SiO_2	CaO	Al_2O_3	MgO	MnO	Р	S	${\rm TiO}_2$	其他	合计
比例	66.67	94.48	0.485	2.267	1.267	0.475	0.178	0.297	0.031	0.021	0.317	0.178	100

2 球团矿还原动力学分析

2.1 CO还原球团矿的动力学分析

CO还原铁氧化物的化学反应如下:

$$(1/3)$$
Fe₂O₃ + CO = $(2/3)$ Fe + CO₂,

CO还原球团矿石的还原速率,按下面的公式计算^[18],mol/(L·min)。

$$R = \frac{\pi d_{p}^{2} \varphi^{-1} N \cdot 273 P'(x-x^{*})/22.4t}{\frac{1}{k_{f}} + \frac{0.5 d_{p} [(1-f_{s})^{-1/3} - 1]}{D_{s}} + \frac{1}{(1-f_{s})^{2/3} k} \times \frac{K}{K+1}},$$
(1)

其中,1/k_f为还原过程的外扩散阻力;分母中第二项为还原过程的内扩散阻力;相应的第三项为还原过程界面化学反应阻力;D_s为还原铁相的 CO 内扩散系数,m²/h;P'为床内压力,取 P'=1.0×10⁵ Pa;k 为还原反应的速度常数,m/h;d_p为球团矿石粒度,取平均值 11 mm; φ 为球团矿石形状系数,球团形状接近圆球,取为 1;N 为单位容积床内球团矿石个数,取 N=779 527;t 为颗粒温度,K;k_f为界膜传质系数,m/h;f_s为球团 矿还原度,f_s=($m_0 - m_t$)/ m_0 , m_0 , m_t 分别为反应前和反应 t 时刻球团矿中与铁结合的氧质量;x,x*分别为床内初始时和平衡时 CO 的物质的量分数,x=1,x*=1/(1+K)。

式(1)中,K 为间接还原反应平衡常数,随着还原反应的进行,还原度发生变化,K 的表达式也相应发生变化^[19]。

$$t \leqslant 575$$
 °C IF

$$f_s < 0.111, K = \exp(4.91 + 6.235/t), Fe_2O_3 \rightarrow Fe_3O_4,$$
 (2)

$$f_s > 0.111, K = \exp(-0.762 \ 5 + 543.3/t), \operatorname{Fe}_3O_4 \to \operatorname{Fe};$$
 (3)

$$f_{s} < 0.111, K = \exp(4.91 + 6\ 235/t), \operatorname{Fe}_{2}O_{3} \rightarrow \operatorname{Fe}_{3}O_{4},$$
 (4)

$$0.111 < f_{s} < 0.333, K = \exp(2.13 - 2\ 050/t), \operatorname{Fe}_{3}O_{4} \rightarrow \operatorname{FeO},$$
(5)

$$f_s > 0.333, K = \exp(-2.642 + 2.164/t), \text{FeO} \rightarrow \text{Fe}_{\circ}$$
 (6)

12

第5期

其余参数按照下式计算:

$$k = 347 \exp(-3\ 460/t),\tag{7}$$

$$Sh = 2.0 + 0.55 (Re)^{1/2} (Sc)^{1/3},$$
(8)

$$D_{s} = D\varepsilon_{v}\xi, \qquad (9)$$

$$D = \frac{(1 \times 10^{-3}) T^{1.75}}{P \left(v_{\frac{1}{3}}^{\frac{1}{3}} + v_{\frac{1}{3}}^{\frac{1}{3}} \right)^2} \sqrt{\frac{1}{M_{\rm A}} + \frac{1}{M_{\rm B}}} \,. \tag{10}$$

式中:D为CO与CO₂之间的互扩散系数,m²/h; M_A 、 M_B 为两气体的分子量,g/mol; ε_v 为还原铁相的气孔 率, $\varepsilon_v = 0.53 + 0.47\varepsilon_p$; ε_p 为未还原矿石的气孔率; ε 为还原铁相的迷宫度, $\varepsilon_p = 0.238\varepsilon_p + 0.04(0.15 \le \varepsilon_p \le 0.5)$; v_A 、 v_B 为两气体的扩散体积,cm³/mol,相应数据见文献[19]。

根据式(1)-(10),计算得到不同还原度下外扩散阻力、内扩散阻力及化学反应阻力随温度的变化,如图 2 所示。

CO还原球团矿时,扩散阻力所占百分比均随温度增大而升高,而界面化学反应阻力所占比例则相应降低。当温度较低时,界面还原反应速率较低,此时,界面化学反应为限制环节;随着温度升高,界面处还原反应速率逐渐增大,其影响相应减小,此时,球团矿中由熔融产物层产生,内扩散阻力增大,该升温还原阶段为界面化学反应和内扩散混合控制;当温度超过 800 ℃时,熔融产物逐渐增厚,界面处还原反应速率继续增大,内扩散阻力成为限制环节。结合图 3 所示,相同温度条件下,当还原度较小时,还原反应速率较快;f。=0.1及0.2时,反应速率随温度呈现出线性变化,这主要是因为低还原度下,扩散阻力及界面化学反应阻力随温度变化较小。图 2 中,随着反应进行,还原度相应增大,反应界面逐渐深入到球团内部,内扩散阻力增加,而外扩散阻力所占比例相应减少,界面化学反应阻力所受影响较小。

2.2 H₂还原球团矿的动力学分析

H₂还原铁氧化物的计算与 CO 类似,如式(11)所示^[18]。

$$R = \frac{\pi d_{\rm p}^2 \varphi^{-1} N \cdot 273 P'(\omega - \omega^*)/22.4t}{\frac{1}{k'_{\rm f}} + \frac{0.5 d_{\rm p} [(1 - f_{\rm s})^{-1/3} - 1]}{D'_{\rm s}} + \frac{1}{(1 - f_{\rm s})^{2/3} k'} \times \frac{K}{K' + 1}},$$
(11)

其中,

$$t < 575$$
 °C 时

$$k = 102.78t \exp(-1.792.16/t), \qquad (12)$$

$$K = \exp(8.883 - 2\ 025.48/t)\,. \tag{13}$$

14

$$t > 575$$
 °C 时
 $k = 82.50t \exp(-1.840.27/t),$ (14)
 $K = \exp(1.083.7 - 415.18/t),$ (15)

如图 4 所示,H₂还原铁氧化物时,温度变化对各项阻力几乎没有影响。扩散阻力占绝大部分,界面化学 反应阻力所占比例几乎为零。

结合图 5,相同温度下,反应速率随还原度增大而降低。还原度增大时,还原所产生的熔融产物增多,内 扩散阻力增大,降低了反应速率。温度升高时,界面还原反应速率和扩散速率均增大,使得反应速率增大,特 别是还原度较小时,反应速率增大较快。低还原度下,即 f_s=0.1及 0.2 时,扩散阻力及界面化学反应阻力随 温度变化较小,与CO还原一样,反应速率随温度也表现出线性增加。

2.3 混合气体还原球团矿的动力学分析

实际生产中,还原气均是 CO 与 H₂ 的混合物,造气方式不同,H₂ 和 CO 的含量也不同。根据上述计算 结果,假设不考虑混合气中 CO 与 H。的交互作用,提出式(16)来计算还原气还原球团矿时的反应速率: $R_{\mathrm{ile}} = R_{\mathrm{CO}} \times \varphi(\mathrm{CO}) + R_{\mathrm{H2}} \times \varphi(\mathrm{H_2})$

图 6 反映了当 $f_s = 0.2$ 时,不同氢碳比的还原气还原 球团矿时反应速率随温度的变化关系。混合气反应速率 均随温度升高而增大,当温度小于 500 ℃时,混合气及纯 CO还原速率均大于纯 H₂还原时的速率;当温度大于 500 ℃时,采用纯 H₂ 还原时的反应速率显著增大,且均大 < 于其余成分的还原速率。同时,随着 CO 体积分数的增量 0.5 加。H₂的体积分数降低,反应速率降低。

CO 还原 Fe₂O₂的反应从 141 ℃开始明显发生, 而 H₂ 还原 Fe₂O₃的反应从 280 ℃才开始明显发生,因此,低温 时 CO 的速率要高于 H₂。CO 还原球团矿反应整体上属 于放热反应,而H₂还原时属于吸热反应,温度较低时, CO体积分数增大,放热增多,有利于增大反应速率,而当 温度升高时,此时条件更有利于吸热反应,使得 H₂ 体积 分数增多时,反应速率增大。同时,高温下 H₂ 的扩散系 数及其在氧化铁上的吸附能力大于 CO,使得反应速率 加快。

(16)

第5期

为验证反应速率模型的准确性,将反应速率模型计算所得理论值与实验值作对比,见表 2。数据结果显示,理论计算模型与实验结果平均误差小于 10%,表明利用该模型能够细致研究铁矿石的反应动力学。

	$\varphi(CO) =$	70%, o(H ₂	$) = 30 \frac{1}{2}$		$\varphi(CO) = 50\%, \varphi(H_2) = 50\%$					
温度/℃	7 百座 /0/	反应速率/(mol・L ⁻¹ ・ min ⁻¹)) 用	7	反应速率/(mol・L ⁻¹ ・ min ⁻¹)			
	⊻原度/ %	实验值	理论值	误差/%	温度/ し	还原度/ %	实验值	理论值	误差/%	
621	20	0.193	0.203	5.18	580	20	0.254	0.237	6.69	
683	30	0.218	0.220	0.91	630	30	0.257	0.248	3.50	
725	40	0.233	0.235	0.86	669	40	0.256	0.255	0.39	
800	50	0.232	0.238	2.58	722	50	0.243	0.253	4.11	
830	60	0.228	0.221	3.07	775	60	0.233	0.258	10.73	
860	70	0.205	0.205	0	810	70	0.215	0.235	9.30	
878	80	0.167	0.170	1.79	872	80	0.187	0.214	14.4	

表 2 计算结果与实验结果对比

Table 2 Comparation of the results between calculation and experiment

3 结 论

通过分析 CO 和 H₂ 还原球团矿石的速率,提出混合气反应速率模型,研究球团矿还原的反应动力学,得 到如下结论:

1)CO还原球团矿时,扩散阻力所占比例随着温度的升高均增大,且内扩散阻力所占比例增大速率明显 大于外扩散阻力,界面化学反应阻力所占比例则随着温度升高而降低,温度高于 800 °C时,内扩散成为速率 控制环节;内扩散阻力所占比例随还原度增大而升高,外扩散阻力及界面化学反应阻力所占比例随还原度的 增大均降低。

2)H₂还原球团矿时,内外扩散阻力及界面化学反应阻力所占比例随温度变化不大,内外扩散阻力所占 比例较大;内扩散阻力所占比例随还原度的升高而升高,外扩散阻力所占比例相对下降;H₂还原球团矿过程 中,内扩散属于速率控制环节。

3)CO和H₂分别还原球团矿时,反应速率均随着温度的升高而升高,随着还原度的升高而降低,当温度高于750℃时,CO还原时反应速率增大已不明显。CO和H₂混合气还原球团矿时,反应速率随温度的升高 而增大,且温度低于500℃时,随着CO体积分数的增加,反应速率降低。理论模型与实验结果能够保持一 致,可以采用该模型研究球团矿的反应动力学。

参考文献:

[1]全球直接还原铁产量未来增长潜力巨大[N].世界金属导报,2013-09-03(FO2).

Globle Direct Reduced Iron Production have Great Potential for Future Growth [N]. The World Metal Guides, 2013-09-03 (FO2). (in Chinese)

[2]魏国,赵庆杰,董文献,等.直接还原铁生产概况及发展[J].中国冶金,2004(9): 18-22.
 WEI Guo, ZHAO Qingjie, DONG Wenxian, et al. Preseent status and development trends of world direct reduction processes[J].China Metallurgy,2004(9):18-22.(in Chinese)

- [3]徐匡迪.低碳经济与钢铁工业[J].钢铁,2010,45(3):1-12. XU Kuangdi,Low carbon economy and iron and steel industry[J].Iron and Steel,2010,45(3):1-12.(in Chinese)
- [4] Ta Kao H, Osamu T, Laso K. The development of new iron making processes [J]. KOBELCO Technology Review, 2015(26):92-97.
- [5] 冯燕波,曹维成,杨双平,等.中国直接还原技术的发展现状及展望[J].中国冶金,2006,16(5):10-13. FENG Yanbo,CHAO Weicheng,YANG Shuangping, et al. Development and prospect on direct reduction technology in china[J].China Metallurgy,2006,16(5):10-13.(in Chinese)

http://qks.cqu.edu.cn

1.0	赤 卞 上 尚 尚 招 · · · · · · · · · · · · · · · · ·
16	里 庆 入 字 字 报 第 38 卷
[6]	唐惠庆,郭兴敏,张圣弼,等.CO/CO2 气氛下含碳球团还原动力学模型及其应用[J].钢铁研究学报,2000(6):1-6.
	TANG Huiqing, GUO minxing, ZHANG Shengbi, et al. Mathematical model for direct reduction of carbon-containing pellet
	and its application[J].Journal of Iron and Steel Research,2000,12(6):1-6.(in Chinese)
[7]	庞建明,郭培民,赵沛,等.低温下氢气还原氧化铁的动力学研究[J].钢铁,2008(7):7-11.
	PANG Jian ming , GUO Pei min, ZHAO Pei, et al. Study on kinetics of hematite reduction by hydrogen at low temperature [J].
	Iron and Steel,2008,43(7):7-11.(in Chinese)
[8]	李永全,周渝生.水煤气条件下球团矿竖炉还原过程研究[C]//中国金属学会 2003 中国钢铁年会论文集(2),2003:
	281-287.
	LI Yongquan,ZHOU Yusheng.the study of pellets reduction processes by shaft reduction: china steel annual meeting,
	$beijing, 2003 [C] // Chinese \ society \ for \ metals \ proceedings \ of \ 2003 \ annual \ meeting \ of \ China's \ iron \ and \ steel \ (2), 2003; 281-2003 \ annual \ meeting \ of \ China's \ iron \ and \ steel \ (2), 2003; 281-2003 \ annual \ meeting \ of \ China's \ iron \ and \ steel \ (2), 2003; 281-2003 \ annual \ meeting \ of \ China's \ iron \ and \ steel \ (2), 2003; 281-2003 \ annual \ meeting \ of \ China's \ iron \ and \ steel \ (2), 2003; 281-2003 \ annual \ meeting \ of \ China's \ iron \ and \ steel \ (2), 2003; 281-2003 \ annual \ meeting \ of \ China's \ iron \ and \ steel \ (2), 2003; 281-2003 \ annual \ meeting \ of \ China's \ iron \ and \ steel \ (2), 2003; 281-2003 \ annual \ meeting \ of \ China's \ iron \ and \ steel \ (2), 2003; 281-2003 \ annual \ meeting \ of \ China's \ iron \ and \ steel \ (2), 2003; 281-2003 \ annual \ meeting \ of \ China's \ iron \ and \ steel \ (2), 2003; 281-2003 \ annual \ meeting \ of \ china's \ iron \ and \ steel \ (2), 2003; 281-2003 \ annual \ meeting \ of \ china's \ iron \ and \ steel \ (2), 2003; 281-2003 \ annual \ meeting \ of \ china's \ iron \ and \ steel \ (2), 2003; 281-2003 \ annual \ meeting \ of \ china's \ steel \ st$
	287.(in Chinese)
[9]	陈庚.气基还原氧化铁动力学机理研究[D].大连:大连理工大学,2011.
	CHEN Geng. The kinetics of the gas based reduction of iron oxide[D]. Dalian: Dalian University of Technology, 2011. (in
	Chinese)
[10]	庞建明,郭培民,赵沛,等.氢气还原氧化铁动力学的非等温热重方法研究[J].钢铁,2009,44(2):11-14.
	PANG Jian ming , GUO Peimin, ZHAO Pei, et al. Kinetics of reduction of hematite by h2 using nonisothermal
	thermogravimetric method[J].Iron and Steel,2009,44(2):11-14.(in Chinese)
[11]	李向伟,陈令坤,王炜.球团矿富氢还原的动力学研究[J].材料与冶金学报,2013,12(4):241-245.
	LI Xiangwei, CHEN Lingkun, WANG Wei. Kinetics of rich hydrogen reduction of pellet [J]. Journal of Materials and
	Metallurgy, 2013, 12(4): 241-245. (in Chinese)
[12]	Luo S, Yi C, Zhou Y. Direct reduction of mixed biomass-Fe2O3 briquettes using biomass-generated syngas[J]. Renewable
	Energy, 2011, 36(12): 3332-3336.
[13]	Ribbenhed M, Thorén M, Sternhufvud C.CO ₂ emission reduction costs for iron ore-based steelmaking in Sweden[J].Journal
	of Cleaner Production, 2008, 16(1): 125-134.
L14]	Kim Y, Worrell E. International comparison of CO_2 emission trends in the iron and steel industry J_{J} . Energy Policy, 2002,
	30(10):827-838.
L15]	陈淼,李家新,李学付.高温下不同氢气含量混合气体还原浮氏体的实验研究[J].金属材料与冶金工程,2007,35(1):
	CHEN Miao, LI Jiaxin, LI Xuetu, Experiment Study on Wustite Reduction with Compound Gases of Different Hydrogen
F10 7	Content at High Temperature[J]. Metal Materials and Metallurgy Engineering, 2007, 35(1):19-22. (in Chinese)
[16]	Weiss B, Sturn J, Voglsam S, et al. Industrial fluidised bed direct reduction kinetics of hematite ore fines in H2 rich gases at
[17]	elevated pressure[J].Chemical Engineering Science, 2011,66(4):703-708.
	Yi L, Huang Z, Jiang T. Sticking of iron ore pellets during reduction with hydrogen and carbon monoxide mixtures:
[10]	benavior and mechanism[J].Powder Technology,2013,233(2):1001-1007.
[10]	〒石,林山阳,寺,田玉以四上柱子山山,北宋:伴子山瓜仁,1301:201-201. BIAN Van SHFN Shanzhao at al Matallurgical Registrar Engineering M Reiling Science Dublishing Company 1021 201
	287 (in Chinese)
[10]	201.1m Childere
L I J]	*11·立//工/ 再却以起性的定劢宜E及账门刀到几LUJ·里仄:里仄八子,4000.

QIN Jie.Study on reductive characteristic and the behavior of carbon during producing sponge iron in shaft furnace[D]. Chongqing Chongqing University,2008.(in Chinese)

(编辑 王维朗)