书 38 卷弟 5 期 2015 年 10 月

doi:10.11835/j.issn.1000-582X.2015.05.12

磷在 CaO-SiO₂-Fe_tO-P₂O₅ 与 2CaO・SiO₂ 颗粒界面间的传质行为

豆晓飞¹,祝明妹^{1,2},林天成¹,王 雨¹,谢 兵¹,朱 斌^{1,2},周 宏² (1. 重庆大学 材料科学与工程学院,重庆 400044; 2.重庆钢铁集团公司,重庆 400080)

摘 要:对 2CaO · SiO₂ (C₂S)颗粒与 C₂S 饱和的 CaO · SiO₂ · Fe_tO · P₂O₅ 渣在 1 500 ℃下的反 应进行了实验研究,采用 SEM/EDS 观测了 C₂S 颗粒与熔渣界面之间不同位置各成分的含量变化, 讨论了磷在 C₂S 颗粒与熔渣界面间的传质行为。结果表明,在 C₂S 颗粒与其周围熔渣形成的固液 两相区内生成了 $n \cdot 2$ CaO · SiO₂ · 3CaO · P₂O₅ (nC₂S-C₃P)固溶体。随着反应时间的延长,nC₂S-C₃P 固溶体层越来越厚,在指向 C₂S 颗粒内部方向,nC₂S-C₃P 固溶体层中的磷含量逐渐降低。了 解磷在 C₂S 与熔渣界面间的传质行为,有助于 CaO · SiO₂ · Fe_tO · P₂O₅ 中 nC₂S-C₃P 固溶体形成机理 的研究。

关键词: $2CaO \cdot SiO_2$; $CaO - SiO_2 - Fe_tO - P_2O_5$; 铁水 脱磷; $n \cdot 2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ 固溶体; 传质行为

中图分类号:TF14 文献标志码:A 文章编号:1000-582X(2015)05-078-05

Behavior of phosphorus transfer from CaO-SiO₂-Fe_tO-P₂O₅ slags to 2CaO • SiO₂ particles

DOU Xiaofei¹, ZHU Mingmei^{1,2}, LIN Tiancheng¹, WANG Yu¹, XIE Bing¹, ZHU Bin^{1,2}, ZHOU Hong²

(1.College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P.R.China;2.Chongqing Iron and Steel Group Corporation, Chongqing 400080, P.R.China)

Abstract: In this paper, the behavior of phosphorus transfer from CaO-SiO₂-Fe_tO-P₂O₅ slags to 2CaO • SiO₂ (C₂S) particles is investigated. The reaction between C₂S particles and the slag saturated C₂S is conducted at 1 500 °C in laboratory. Ingredients at different positions on the interface between C₂S particles and the slag are observed and analyzed by SEM/EDS and the phosphorous transfer behavior is discussed. The result shows that C₂S particles react with the particles surrounded molten slag in the solid-liquid two phase zone and forms the $n \cdot 2$ CaO • SiO₂-3CaO • P₂O₅ (nC₂S-C₃P) solid solution. With the reaction time progressing, the thickness of nC₂S-C₃P solid solution layer increases. In the direction to the inside of C₂S particles, the phosphorus content in the nC₂S-C₃P layer decreases. Knowing the behavior of phosphorus transfer from CaO-SiO₂-Fe₁O-P₂O₅ slags to C₂S phase is helpful to study the formation mechanism of nC₂S-C₃P in the slags.

收稿日期:2015-05-20

基金项目:重庆市博士后特别资助项目(NO.XM201326);中国博士后基金资助项目(NO.2013M542259)。

Supported by The Science Special Foundation for Postdoctorate Research Project of Chongqing (No. XM201326) and China Postdoctoral Foundation(No. 2013M542259).

作者简介:豆晓飞(1988-),男,主要从事转炉脱磷方面的研究;

祝明妹(联系人),女,重庆大学副教授,(E-mail)zhumingmei@cqu.edu.cn。

Key words: $2CaO \cdot SiO_2$ particles; $CaO - SiO_2 - Fe_tO - P_2O_5$ slags; hot metal dephosphorization; $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution; behavior of phosphorus transfer

一般的铁水脱磷渣和转炉炼钢渣主要是以 CaO-SiO₂-Fe_tO-P₂O₅ 渣系为主,而且成分通常在 2CaO・SiO₂(C₂S)饱和范围内,以固液共存的状态存在^[1]。前人做了大量的研究^[2-8],认为 CaO-SiO₂-Fe_tO-P₂O₅ 渣 系中的磷主要以 *n* • 2CaO • SiO₂-3CaO • P₂O₅(*n*C₂S-C₃P)固溶体的形式富集在 C₂S 相中,而其他相中几乎不存在磷。因此,在转炉冶炼过程中可以通过调整成渣路线,使炉渣中的磷以最大的限度进入 C₂S 相中形成 *n*C₂S-C₃P 固溶体,这样可以减少磷在液相渣中的含量,使得炉渣脱磷的驱动力增大,并且磷在固溶体中很稳 定,可以减少冶炼后期回磷,最终提高铁水脱磷率。

铁水脱磷和炼钢脱磷的理论前人进行了广泛的研究^[9-14],但对磷在 C_2S 相与熔渣界面之间的传质行为和机理研究不够详细。一般只是宏观地讨论磷在 C_2S 相与熔渣界面间传质的组成环节,而对每个环节没有较深入的分析,尤其是对反应机理的研究^[14]。对 C_2S 颗粒与 CaO-SiO₂-Fe_tO-P₂O₅ 在 1 500 °C下的反应进行了实验研究,采用 SEM/EDS 观测了 C_2S 颗粒与熔渣界面之间各成分含量的变化,讨论了磷在 C_2S 颗粒与熔渣界面间的传质行为。为研究磷富集相 nC_2S -C₃P 固溶体的形成机理做了初步的基础研究,对铁水脱磷和转炉脱磷基础理论的建立有一定的参考价值。

1 实 验

1.1 实验渣配制

实验渣 CaO-SiO₂-Fe₁O-P₂O₅ 由化学分析纯试剂配制而成,其中 FeO 在保护气氛下通过分解 FeC₂O₄ • 2H₂O 得到,其他组元的有效成分分别由 CaO、SiO₂ 和 3CaO • P₂O₅ 得到。表 1 为配制的实验渣成分。图 1 为实验渣成分在 1 500 ℃时 CaO-SiO₂-FeO 渣系液相线图中的位置,可以看出实验渣成分刚好在 1 500 ℃时 的液相线上。

表 1 实验渣成分/%									
Table 1	Composition of	experimental	slag/wt.%						
CaO	SiO_2	FeO	P_2O_5						
40.9	34.1	20.0	5.0						

1.2 固体 C₂S 的制备

将 CaO 与 SiO₂ 化学纯试剂按摩尔比 2:1充分混匀后,在 50 MPa 的压力下保压 3 min 压制成小圆柱棒, 再将压制好的小圆柱棒装入石墨坩埚,在真空感应炉中加热至 1 500 ℃时保温 24 h,冷却后取出试样,制成 粉末后加入 1%~2%B₂O₃ 来防止 C₂S 在低温下发生粉化,充分混匀后,再在 50 MPa 下保压 3 min,压成小 圆柱棒之后再装入石墨坩埚中,在 1 500 ℃下保温 24 h。合成的 C₂S 的 XRD 分析结果如图 2 所示,与标准 卡片中的衍射峰对比可知几乎全部为 C₂S。

图 1 1 500 ℃ 时渣在 CaO-SiO₂-FeO 液相线图中的位置 Fig.1 Compositions of slag in liquidus of CaO-FeO-SiO₂ ternary system at 1 500 ℃

http://qks.cqu.edu.cn

1.3 步骤和检测方法

把配好的渣预先充分熔化之后再磨成细粉,取15g预熔渣与3g粒径100μm左右的C₂S颗粒在研磨中 充分混匀之后装入 MgO 坩埚(外径:33 mm,内径:30 mm,高:53 mm)中,外套石墨坩埚一起放入高温 MoSi₂炉中加热,等温度升至1500℃时开始计时,分别在1s、60 s和300 s时用小钢棒蘸取渣样,并迅速用 液氮冷却。冷却后的渣样镶嵌于环氧树脂与乙二胺配制的溶液中,等充分凝固之后,渣样表面抛光并喷金, 用 SEM/EDS 观测磷在 C₂S颗粒与熔渣界面间的分布。

2 结果与讨论

图 3(a)、(b)和(c)分别为 C₂S 颗粒与 CaO-SiO₂-Fe_tO-P₂O₅ 升温至 1 500 ℃后在 1 s、60 s 和 300 s 时的 SEM 照片。从图中很明显的看到熔渣和 C₂S 颗粒之间有一层产物层,根据前人的研究结果^[2+9]可知此产物 层为 nC_2S -C₃P 固溶体。随着反应时间的延长产物层越来越厚,而 C₂S 颗粒越来越小。基于熔渣的分子结构 理论^[15],把图 1 中不同位置的 EDS 分析结果转换成氧化物含量列于表 2 中,从表 2 中可以看出靠近反应产 物层的熔渣中,P₂O₅ 含量比熔渣本体中的要低,例如图 3(a)、(b)和(c)中的位置 3、2 和 2。还可以看出 nC_2S -C₃P 固溶体层中的 P₂O₅ 含量比熔渣中的要高很多,最高能达到 8.9%,这是由于 C₂S 颗粒富集熔渣中 磷的结果。而且,在指向 C₂S 颗粒内部的方向, nC_2S -C₃P 固溶体层中的 P₂O₅ 含量是逐渐降低的。表 2 中各 个位置的成分在 CaO-SiO₂-P₂O₅ 三元成分图中的位置如图 4 所示。从图 4 中可以看出随着反应时间的延 长,产物层中的各成分越来越靠近 C₂S-C₃P 连线,这说明随着反应时间的延长,产物层的成分越来越接近 nC_2S -C₃P,此从另一方面证明了熔渣与 C₂S 反应的产物为 nC_2S -C₃P 固溶体。

(a)1 s

(b)60 s

(c)300 s

图 3 C₂S 颗粒与熔渣在不同反应时间的 SEM 照片

Fig.3 SEM images of the reaction between C_2S particles and molten slag at different time

表 2 C₂S 颗粒与熔渣不同位置各成分 EDS 检测结果/%

位置 -	反应 1 s			反应 60 s			反应 300 s					
	CaO	${\rm SiO}_2$	FeO	P_2O_5	CaO	SiO_2	FeO	P_2O_5	CaO	${\rm SiO}_2$	FeO	P_2O_5
1	41.2	33.6	20.3	4.9	41.5	34.0	19.8	4.7	41.6	31.9	21.7	4.8
2	40.3	33.5	21.2	5.0	42.5	28.5	24.6	4.4	43.2	26.5	26.1	4.2
3	43.5	29.0	23.0	4.5	59.4	27.8	4.1	8.7	59.6	27.8	3.7	8.9
4	56.3	29.6	5.6	8.5	61.3	34.1	2.4	2.2	60.0	27.7	3.6	8.7
5	58.5	30.6	4.4	6.5	64.6	34.9	0.5	0	62.2	28.6	1.3	7.9
6	64.6	34.8	0.4	0.2					61.4	29.2	2.6	6.8
7	64.7	34.8	0.5	0					61.9	30.4	2.5	5.2
8									60.9	34.6	2.4	2.1
9									64.3	34.5	0.3	0.9
10									64.7	34.8	0.5	0

Table 2 Results of EDS analysis in different position of C₂S particles and molten slag/wt.%

80

第5期

图 4 C₂S 颗粒与熔渣反应后不同位置的成分在 CaO-SiO₂-P₂O₅ 三元成分图中的位置 Fig.4 Compositions in different position of C₂S particles and molten slag at different time in CaO-SiO₂-P₂O₅ ternary system

根据目前的研究结果, C_2S 颗粒与 CaO-SiO₂-Fe₁O-P₂O₅ 在 1 500 °C时的反应可以描述为如图 5 所示的 过程。由于熔渣中 CaO 与 P₂O₅ 反应的自由能远远大于与 SiO₂ 和 FeO 反应的自由能^[16-18],所以本文忽略 了 FeO 对熔渣和 C₂S 颗粒反应过程的影响,只讨论磷在熔渣与 C₂S 界面之间的分布情况。当 C₂S 颗粒与熔 渣反应时,由于 C₂S 颗粒表面有许多小裂纹,在毛细作用下,高温熔渣会首先渗透进入 C₂S 颗粒表面的缝隙 中,紧接着 C₂S 颗粒表层会被溶解进入周围的熔渣中。由于熔渣的成分处于 C₂S 饱和区,所以在 C₂S 颗粒周 围形成了固液共存的区域。在此区域中 C₂S 与其周围熔渣中的磷发生反应生成 nC_2S -C₃P 固溶体。随着时 间的延长,会不断地有 C₂S 溶解,与此同时也不断地会有 nC_2S -C₃P 固溶体生成。由于与 C₂S 反应后的熔渣 中磷的含量会下降,而且反应后的熔渣还会继续渗透进入 C₂S 颗粒内部,这样使得内部的 C₂S 富集到的磷含 量相对减少。这个过程就好似 C₂S 颗粒为一层层可以过滤掉磷的滤纸包裹而成,当熔渣通过 C₂S 颗粒时熔 渣中的磷会被一层层过滤掉,使得指向 C₂S 颗粒内部方向的磷含量逐渐降低。如果时间够长的话,就会不断 的重复以上过程,直到 C₂S 颗粒反应完全,全部生成 nC_2S -C₃P 固溶体。

图 5 C₂S颗粒与熔渣反应过程示意图

Fig.5 The schematic diagram of reaction process between C_2S particle and slag

3 结 论

通过实验研究了粒径大约 100 μ m 的 C₂S 颗粒与 CaO-SiO₂-Fe_tO-P₂O₅ 在 1 500 ℃反应时界面间磷的 传质行为,得到的结论如下:

第38卷

1)随着反应时间的延长,产物层的成分越来越接近 nC_2S-C_3P 固溶体; nC_2S-C_3P 固溶体层越来越厚, C_2S 颗粒越来越小;

2)在 C_2S 颗粒与其周围熔渣形成的固液两相区内生成了 nC_2S - C_3P 固溶体;

3)在指向 C_2S 颗粒内部的方向, nC_2S - C_3P 固溶体层中的磷含量逐渐降低。

参考文献:

82

- [1] Fix W, Heymann H, Heinke R. Subsolidus relations in the system 2CaO SiO₂-3CaO P₂O₅ [J]. Journal of the American Ceramic Society, 2006, 52(6):346-347.
- [2] Ito K, Yanagisawa M, Sano N. Phosphorus distribution between solid 2CaO SiO₂ and molten CaO-SiO₂-FeO-Fe₂O₃ slags [J]. Tetsu-to-Hagané, 1982, 68 : 342.
- [3] Inoue R, Suito H. Phosphorous partition between 2CaO SiO₂ particles and CaO-SiO₂-Fe_tO slags [J]. ISIJ Int., 2006, 46(2): 174-179.
- [4] Shimauchi K, Kitamura S, Shibata H. Distribution of P₂O₅ between solid dicalcium silicate and liquid phases in CaO-SiO₂-Fe₂O₃ system [J]. ISIJ Int., 2009, 49 (4): 505-511.
- [5]李辽沙,于雪峰,余亮等.转炉钢渣中磷的分布[J].中国冶金,2007,17(1):42-46. LI Liaosha, YU Xuefeng, YU Liang, et al. Phosphorus distribution in converter slag [J]. China Metallurgy, 2007, 17(1):42-46.(in Chinese)
- [6] 王雨,郭戍, 刁江等.高磷渣中磷元素分布及赋存形式研究[J]. 中国稀土学报, 2010, 28(专辑): 444-447. WANG Yu, GUO Xu, DIAO Jiang, et al. Study on phosphorus distribution and existing forms in the high-phosphorus slag [J]. Journal of the Chinese Rare Earth Society, 2010, 28(Spec. Issue): 444-447.(in Chinese)
- [7] 武杏荣, 安吉南, 陈荣欢, 等. 转炉钢渣中磷的富集与富磷相长大[J]. 安徽工业大学学报(自然科学版), 2010, 27 (3): 233-239.

WU Xingrong, AN Jinan, CHEN Ronghuan, et al. Distribution and concentration of phosphorus in factory converter slags and growth of P-concentrating phase [J]. Journal of Anhui University of Technology (Natural Science), 2010, 27 (3): 233-239.(in Chinese)

- [8] Inoue R, Suito H. Mechanism of dephosphorization with CaO-SiO₂-Fe_tO slags containing mesoscopic scale 2CaO SiO₂ particles [J]. ISIJ International, 2006, 46 (2): 188-194.
- [9] Khanh S, Yoshiaki K. Phosphorus partition in dephosphorization slag occurring with crystallization at initial stage of solidification [J]. ISIJ Int., 2008, 48 (9): 1165-1174.
- [10] 周寒梅,包燕平,林路. P₂O₅对 CaO-SiO₂-Fe_tO-P₂O₅ 渣中富磷相的影响[J]. 中国冶金, 2013, 23 (1): 45-49.
 ZHOU Hanmei, BAO Yanping, LIN Lu. Efect of P₂O₅ on rich phosphorus phase of CaO-SiO₂-Fe_tO-P₂O₅ slag [J].
 China Metallurgy, 2013, 23 (1): 45-49.(in Chinese)
- [11] Kitamura S, Shibata H, Shimauchi K et al. Importance of dicalcium silicate for hot metal dephosphorization reaction [C] // Subject of a Presentation at the 2007 ATS International Steelmaking Conference, December 13-14, 2007, Paris: La Revue de Metallurgy-CIT-Mai 2008: 263-271.
- [12] Paklevani F, Kitamura S, Shibata H, et al. Distribution of P₂O₅ between solid solution of 2CaO SiO₂ and 3CaO P₂O₅ and liquid phase [J]. ISIJ International. 2010, 50 (6): 822-829.
- [13] Fukagai S, Hamano T, Tsukihashi F. Formation reaction of phosphate compound on rnulti phase flux at 1573K [J]. ISIJ International, 2007, 47 (1): 187-189.
- [14] 王楠,梁志刚,陈敏,等. CaO-SiO₂-Fe_tO-P₂O₅ 渣中磷的富集行为[J]. 东北大学学报(自然科学版), 2011, 32 (6): 814-817.

WANG Nan, LIANG Zhigang, CHEN Min, et al. Enrichment behavior of phosphorus in CaO-SiO₂-Fe_tO-P₂O₅ slag [J]. Journal of Northeast University (Natural Science), 2011, 32 (6): 814-817.(in Chinese)

- [15] 黄希祜.钢铁冶金原理[M]. 北京:冶金工业出版社, 2012: 163-165.
 HUANG Xihu. Principle of iron & steel metallurgy [M]. Metallurgy Industry Press, Beijing, 2012: 163-165.(in Chinese)
- [16] Nassaralla C, Fruehan R J. Phosphate capacity of CaO-Al₂O₃ slags containing CaF₂, BaO, Li₂O, or Na₂O [J]. Trans. Metall. B, 1992, 23 (2): 117-123.
- [17] Timucin M, Muan A. Activity-composition relations in NiAl₂O₄-MnAl₂O₄ solid solutions and stabilities of NiAl₂O₄ and MnAl₂O₄ at 1 300 °C and 1 400 °C [J]. J. Am. Ceram. Soc., 1922, 75 (6): 1399-1406.
- [18] Barin I, Knacke O, Kubaschewski O. Thermochemical properties of inorganic substances [M]. New York, NY: Supplement, Springer, 1977: 392.