doi:10.11835/j.issn.1000-582X.2020.283

纳米银粒子耦合 BiVO4 和海泡石的制备及性能研究

王 亮1,舒友菊2,郑亚超1,施冬健1,陈明清1

(1. 江南大学 化学与材料工程学院,江苏 无锡 214122;2.洛阳理工学院,河南 洛阳 471003)

摘要:通过水热法制备了 BiVO4和 BiVO4/海泡石光催化剂,利用 AgNO3作为前体试剂,在光照的条件下,制备了不同银负载量的 Ag/BiVO4/海泡石复合光催化剂。利用 XRD、SEM、TEM、 XPS和 DRS 等测试手段对光催化剂的性质等进行了表征。以罗丹明 B 为模型污染物,考察了不同 银负载量对 Ag/BiVO4/海泡石复合光催化剂性能的影响。结果表明,当银的负载量达到 60%时, 复合光催化剂对罗丹明 B 的脱色效果最好,可在 10 min 之内完全将罗丹明 B 脱色。同时 0.6 Ag/ BiVO4/海泡石样品具有一定的循环稳定性,可多次使用。

关键词:Ag/BiVO₄/海泡石;光催化;可见光
 中图分类号:O643.36;O644.1 文献标志码:A 文章编号:1000-582X(2021)06-118-09

Preparation and properties of silver nanoparticles coupled with BiVO₄ and sepiolite

WANG Liang¹, SHU Youju², ZHENG Yaochao¹, SHI Dongjian¹, CHEN Mingqing¹

School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China;
 Luoyang Institute of Science and Technology, Luoyang 471003, Henan, P. R. China)

Abstract: $BiVO_4$ and $BiVO_4$ /sepiolite were prepared by hydrothermal method, and $Ag/BiVO_4$ /sepiolite composite photocatalysts with different Ag loadings were prepared under the light using AgNO₃ as a precursor reagent. XRD, SEM, TEM, XPS and DRS were used to characterize the photocatalysts. Using rhodamine B as a model pollutant, the effects of different Ag loadings on the performance of Ag/BiVO₄/ sepiolite composite photocatalysts were investigated. The results show that when the loading of Ag reaches 60%, the composite photocatalyst has the best decolorization effect on rhodamine B, and the rhodamine B can be completely decolorized within 10 minutes. At the same time, the 0.6Ag/BiVO₄/sepiolite sample shows substantial recyclability and cycling stability.

Keywords: Ag/BiVO₄/sepiolite; photocatalysis; visible light

光催化技术是一种高级氧化技术,简单来说,光催化剂在吸收特定波长的光辐射后,会产生电子和空穴 对,随后会引发一系列的化学反应,从而将有机污染物分解成无毒无害的小分子^[1]。光催化技术在很多领域

收稿日期:2019-12-30 网络出版日期:2020-04-21

基金项目:国家自然科学基金项目(21571084)。

Supported by National Natural Science Foundation of China(21571084).

作者简介:王亮(1993—),硕士研究生,主要研究方向为纳米材料,(E-mail) lwang86@126.com。

通讯作者:陈明清,男,教授,博士生导师,主要从事纳米材料与合成方面的研究,(E-mail)mqchen@jiangnan.edu.cn。

都有应用,例如分解水产氢、降解水体中微量的有机物、空气净化等。大多数铋系光催化剂的价带位置较正, 具有较强的氧化能力,其化合物的禁带宽度比较窄,可以被可见光所激发,是一种理想的可见光催化剂^[2-4]。 钒酸铋是一种特殊的铋系催化剂,主要有3种晶型,分别是单斜白钨矿型、四方硅酸锆型和四方白钨矿型。 由于禁带宽度(2.4 eV)较低以及对可见光的响应性,使得单斜晶相钒酸铋(m-BiVO4)越来越受到研究人员 的关注^[5]。然而,纯相钒酸铋电子空穴对的重组率较高,导致其光催化活性并不高。为了抑制光生载流子的 复合,提高电子和空穴的分离效率,一些学者对 BiVO4进行了许多改性研究,包括将 BiVO4和其他半导体结 合形成异质结^[6-8]]以及掺杂或负载不同的金属^[9-10]。虽然,BiVO4经过一定程度的改性后,催化活性有所提 高,但是,当催化剂颗粒在水溶液体系中使用时,很容易发生团聚现象,从而降低其催化活性^[11]。通过将催 化剂颗粒分散在多孔矿物上来避免团聚是一种好的方法。海泡石是一种天然的硅酸镁层状黏土矿物,它的 结构是由两个 Si-O 四面体层和一个 Mg-O 八面体片构成。通常,海泡石的微观形态呈纤维状,这种结构使 得其具有大的比表面积,因此对水体中的污染物的吸附能力比较强^[12-14]。所以,可以将半导体光催化材料负 载到海泡石上,利用海泡石的强吸附性,增加污染物与活性组分的接触位点,从而提高其光催化活性^[15-20]。 目前,将钒酸铋负载到海泡石上还很少有报道,同时,纳米银粒子可以和 BiVO4耦合形成 SPR 效应从而扩大 催化剂对光的吸收能力,而且纳米银粒子还具有抗菌消炎的作用。当前,将纳米银粒子耦合到复合光催化剂 上还未有报道。

本研究利用水热法,首先制备了 BiVO4和海泡石复合催化剂,再利用 AgNO3作为前体试剂,在光照的条件下,制备了不同纳米银粒子耦合 BiVO4/海泡石新型复合催化剂,最后测试合成的新型催化剂在污染物去除方面的效果,同时也探究了其可能的光催化机理。

1 实验部分

1.1 试剂与仪器

五水硝酸铋((Bi(NO₃)₃•5H₂O),海泡石,硝酸银(AgNO₃),甲醇(CH₃OH),罗丹明B,乙二胺四乙酸(EDTA),异丙醇(IPA),对苯醌(BQ),均是分析纯。

电子天平,CEL-HXF300 氙灯光源,HJ-6A 数显恒温磁力搅拌器,DHG-9140A 电热恒温鼓风干燥箱,离心机。

X 射线衍射仪,场发射扫描电子显微镜,透射电子显微镜,紫外-可见-近红外分光光度计,UV5100 双光 束紫外可见分光光度计,ASAP2020MP 全自动比表面积及微孔物理吸附仪。

1.2 催化剂的制备

BiVO₄和海泡石复合物的制备:10 mmol的五水硝酸铋和1g的海泡石溶于 30 mL 2 mol/L的硝酸溶液 中,室温搅拌1h,得到溶液A。10 mmol的偏钒酸铵溶于 30 mL 1 mol/L的氢氧化钠溶液中,室温搅拌1h, 得到溶液B。将溶液A在搅拌的条件下缓慢滴加到溶液B中形成淡黄色悬浮液。用2 mol/L的氨水调节上 述悬浮液的pH值为7,在室温下搅拌1h,将悬浮液转移至200 mL的水热反应釜中,160℃反应12h,取出, 依次用去离子水,乙醇交替洗涤几次,在空气氛围下,60℃干燥6h,600℃煅烧4h,样品标记为BiVO₄/海泡 石。作为对比,在不添加海泡石的情况下,用同样的方法制备纯相BiVO₄。

纳米银粒子耦合 BiVO₄和海泡石的制备:取上述制得的 BiVO₄/海泡石 0.5 g,确定量的硝酸银和 40 mL 甲醇溶液在搅拌的条件下加入 60 mL 的去离子水中,将上述黄色悬浮液超声处理 30 min,在黑暗的条件下 磁力搅拌 2 h。之后,将混合溶液用 300 W Xe 灯(λ> 420 nm)照射 2 h。最后,将获得的样品过滤、洗涤并在 真空烘箱中于 60 ℃下干燥 6 h。将制得的样品标记为 XAg/BiVO₄/海泡石,其中 X 表示 Ag 与 BiVO₄/海 泡石的质量比(例如:0.2Ag/BiVO₄/海泡石,表示 Ag 的质量百分数为 20%)。

1.3 光催化实验

准确量取 100 mL 2 mol/L 的罗丹明 B 溶液于 200 mL 的烧杯中,加入 0.1 g 的催化剂,在黑暗的条件下 搅拌 30 min,以便达到吸附平衡,然后用 300 W(λ>420 nm)的氙灯为光源照射,每隔 10 min 取样一次,共计

取样 6 次,对所取的样品离心分离,取上层清夜,用紫外可见分光光度计在最佳吸收波长(553 nm)处测其吸光度。

2 结果与讨论

2.1 XRD 分析

不同样品的 XRD 衍射如图 1 所示。从图 1 中可以看出,所有样品的衍射峰都可以很好的与 BiVO₄的标准卡片(PDF #14-0688)相对应,在 $2\theta = 18.98^{\circ}, 28.94^{\circ}, 30.54^{\circ}$ 处的衍射峰分别对应于 BiVO₄的晶面指数 (011),(121),(040)。对于 Ag/BiVO₄/海泡石样品,在 $2\theta = 38.11^{\circ}$ 处的衍射峰对应于纳米银粒子的特征峰,表明纳米银粒子的成功负载。因此,通过 XRD 结果可知,已经成功制备了 Ag/BiVO₄/海泡石复合光催化剂。

(d)—0.6Ag/BiVO₄/海泡石;(e)—0.8Ag/BiVO₄/海泡石;(f)—Ag/BiVO₄/海泡石

图 1 不同样品的 XRD 衍射图 Fig. 1 XRD pattern of different samples

2.2 SEM 和 TEM

为了更好地观察合成材料的形貌特征,SEM 和 TEM 被应用到初步分析图 2 是样品的 SEM 和 TEM 图 片。图 2(a)与(b)分别是未经负载的海泡石和 0.6Ag/BiVO₄/海泡石样品的 SEM 图。从图中可以看出,纯 的海泡石显示出具有粗糙表面的纤维结构,并具有明显的空隙度。而图 2(b)负载 0.6Ag/BiVO₄/海泡石样 品,海泡石的表面呈现着大小不均匀的纳米晶体颗粒,并且显微结构的孔隙度明显有所改变,并且反应溶液 从开始的黄色变成暗绿色,由此可推断纳米银粒子和 BiVO₄负载在基体表面而呈现不同的结构特征。 图 2(c)是 0.6Ag/BiVO₄/海泡石样品的 TEM 图,可以看出,样品表面有明显晶型结构,根据粒径大小大致推 测为 BiVO₄和银纳米粒子。图 2(d)和(e)是高分辨透射电子显微镜图,可以看出晶格条纹的存在,其中晶格 间距 0.308 nm 与 BiVO₄的(112)晶面相匹配,晶格间距 0.236 nm 与银单质的(111)晶面相匹配,这说明了纳 米银粒子和 BiVO₄均被负载,这与 XRD 的测试结果相一致,说明成功合成了纳米银粒子耦合 BiVO₄和海泡 石的复合光催化剂。

(a)海泡石样品的SEM

(b) 0.6Ag/BiVO /海泡石样品的SEM

(d) HRTEM(BiVO₄, d(112)=0.308 nm) 图 2 样品的 SEM 和 TEM Fig. 2 The samples' SEM and TEM images

(e) HRTEM(Ag, d(111)=0.236 nm)

2.3 XPS 分析

为了确定样品中各元素的化学状态,进行了 XPS 测试,图 3 是 0.6Ag/BiVO₄/海泡石样品的高分辨 XPS 图谱。从图 3(a)中可以看出,164.5 eV 和 159.2 eV 这两个强峰分别对应 Bi³⁺中的 Bi 4f_{5/2}和 Bi 4f_{7/2}^[21]。从 图 3(b)中可以看出,在 524.4 eV 和 516.8 eV 处的峰归因于 V 2p1/2 和 V 2p3/2,说明钒元素是以 V5+的形式存 在^[22]。图 3(c)出现 3 个结合能,可以归属于 O 1s 的特征峰^[23]。从图 3(d)中可以看出,对应于 3d_{5/2}和 3d_{3/2} 轨道的 Ag 3d 的 2 个结合能出现在 368.1 eV 和 374.2 eV 处,这表明纳米银粒子的形成[22]。

图 3 0.6Ag/BiVO₄/海泡石样品的高分辨 XPS 图谱 Fig. 3 High-resolution regional XPS spectra of 0.6Ag/BiVO₄/sepiolite

2.4 DRS 分析

为了更好地观察所得样品对可见光的吸收能力,进行了紫外-可见漫反射光谱(DRS)分析实验。从图 4 可以看出,未负载银的样品的吸收带边为 510 nm 左右,负载银之后,样品的吸收带边出现轻微的红移^[24],在 500~650 nm 的吸收会增强,且样品 0.6Ag/BiVO₄/海泡石的吸收最强,这可归因于纳米银粒子的 SPR 效 应^[25],导致禁带宽度变狭窄,进而提高了光催化效率。

图 4 不同样品的紫外-可见漫反射光谱 Fig. 4 UV-Vis diffuse reflectance spectra of different samples

2.5 可见光催化性能

为了观察合成的催化剂实际的应用价值,进行了有机染料罗丹明 B 的脱色实验。从图 5 可以看出,纯的 BiVO4 对罗丹明 B 的吸附量在 6%左右,在加入海泡石后,吸附量上升至 25%左右,且最终的降解效率都较 纯的 BiVO4有明显的提高。与纯的 BiVO4样品相比,所有样品的最终脱色率都达到了 100%。其中,0.6Ag/ BiVO4/海泡石样品的可见光催化性能最好,在 10 min 内,对罗丹明 B 的脱色率已经达到了 100%。所有样 品的催化活性顺序为: BiVO4 < BiVO4 /海泡石<0.2Ag/BiVO4 /海泡石<Ag/BiVO4 /海泡石<0.8Ag/

BiVO₄/海泡石<0.4Ag/BiVO₄/海泡石<0.6Ag/BiVO₄/海泡石,说明纳米银粒子的负载量有一个最佳值, 负载量过多或过少对催化性能的提高都有一定程度的限制。这是由于过量的纳米银粒子在 BiVO₄表面聚 集,这可能会覆盖铋的活性位点,从而降低了催化效率^[26]。

2.6 稳定性实验和光催化机理

为了进一步研究复合光催化剂对罗丹明 B 的降解机理,进行了活性物种的捕获实验。在这里,用异丙醇 (IPA)作为羟基自由基(•OH)的捕获剂,用对苯醌(BQ)作为超氧自由基(•O₂)的捕获剂,用乙二胺四乙 酸(EDTA)作为空穴(h⁺)的捕获剂,其结果见图 6。从图 6 中可以看出,当加入 BQ 或 IPA 时,样品的催化活 性有轻微的下降,说明在催化降解罗丹明 B 过程中,•O²⁻和•OH 起到一定的作用^[24]。当加入 EDTA 时, 样品的催化活性有很大程度的降低,这表明 h⁺是整个降解过程中主要的活性物种^[27]。图 7 是可能的降解机 理图,当催化剂受到光的照射时,BiVO4价带的电子被激发跃迁到导带,从而在价带上产生空穴,导带上产生 电子,由于纳米银粒子和 BiVO4的接触,纳米银粒子可以作为电子的有效吸附体,降低了电子一空穴对的复合 率,与此同时,纳米银粒子上的电子可以和吸附的分子氧反应生成超氧自由基(•O₂),BiVO4价带上的空穴 可以直接和污染物反应,或者和水分子反应产生羟基自由基(•OH),这些自由基可以将 RhB 降解为中间产 物,甚至小分子的 CO2 和 H₂O^[28]。

Fig. 6 Photocatalytic degradation of RhB over the 0.6Ag/BiVO₄/海泡石 sample with different scavengers

图 7 0.6Ag/BiVO₄/海泡石样品对 RhB 降解的可能机理图 Fig. 7 Possible mechanism of RhB degradation over 0.6Ag/BiVO₄/sepiolite sample

为了了解样品的稳定性,进行了循环稳定性测试。具体的步骤如下:取催化性能最好的样品 0.6Ag/ BiVO₄/海泡石做稳定性测试,将光催化后的样品洗涤,干燥,称重,并重复上述步骤 7 次。如图 8 所示,经过 7 次循环实验后,光催化效率降至 98.6%,这表明 0.6Ag/BiVO₄/海泡石样品的循环稳定性较好。

Fig. 8 Cycle runs of photocatalytic degradation of RhB

3 结 论

利用光沉积法,制备了纳米银粒子耦合 BiVO4和海泡石复合光催化剂,与纯的 BiVO4相比,由于纳米银 粒子的加入,导致复合催化剂对可见光的吸收增强,这使得 Ag/BiVO4/海泡石样品的光催化性能得到提升。 此外,还进行了活性物种捕获实验以及循环稳定性测试,结果表明,在降解 RhB 过程中,空穴是主要的活性 物种,循环 7 次后,样品对 RhB 的降解率没有明显的下降,这说明合成的样品具有较好的稳定性。

参考文献:

[1] Ateia M, Alalm M G, Awfa D, et al. Modeling the degradation and disinfection of water pollutants by photocatalysts and composites: a critical review[J]. Science of the Total Environment, 2020, 698: 134197.

- [2] Rahman M F, Haque M S, Hasan M, et al. Fabrication of bismuth vanadate (BiVO₄) nanoparticles by a facile route[J]. Transactions on Electrical and Electronic Materials, 2019, 20(6): 522-529.
- [3] Lee S, Song J, Jo Y R, et al. In situ growth of nanostructured BiVO₄-Bi₂O₃ mixed-phase via nonequilibrium deposition involving metal exsolution for enhanced photoelectrochemical water splitting[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44069-44076.
- [4] Marks R, Doudrick K. Photocatalytic reduction of chlorite in water using bismuth vanadate (BiVO₄): effect of irradiance conditions and presence of oxalate on the reactivity and by-product selectivity[J]. Environmental Science: Water Research & Technology, 2019, 5(11): 2015-2026.
- [5] Stoltzfus M W, Woodward P M, Seshadri R, et al. Structure and bonding in SnWO₄, PbWO₄, and BiVO₄: lone pairs vs inert pairs[J]. Inorganic Chemistry, 2007, 46(10): 3839-3850.
- [6]刘一鸣,张曦,陈芳艳,等. Ag₃PO₄/Bi₂O₃异质结光催化剂的制备及其光催化性能研究[J]. 江苏科技大学学报(自然科学版), 2019, 33(5): 89-96.
 Liu Y M, Zhang X, Chen F Y, et al. Preparation and photocatalytic activity of heterojunction-structured photocatalysts
 Ag₃PO₄/Bi₂O₃[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2019, 33(5): 89-
- [7] Qiao R, Mao M M, Hu E L, et al. Facile formation of mesoporous BiVO₄/Ag/AgClheterostructured microspheres with enhanced visible-light photoactivity[J]. Inorganic Chemistry, 2015, 54(18): 9033-9039.
- [8] 刘帅,刘进博,李旭贺,等. WO₃/g-C₃ N₄异质结催化剂的制备及其氧化脱硫性能[J]. 燃料化学学报, 2019, 47(7): 852-862. Liu S, Liu J B, Li X H, et al. Preparation of WO₃/g-C₃ N₄ heterojunction catalyst and its oxidative desulfurization
- performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 852-862.(in Chinese) [9] Regmi C, Kshetri Y K, Ray S K, et al. Utilization of visible to NIR light energy by Yb⁺³, Er⁺³ and Tm⁺³ doped BiVO₄
- for the photocatalytic degradation of methylene blue[J]. Applied Surface Science, 2017, 392: 61-70.
- [10] Shan L W, Mi J B, Dong L M, et al. Enhanced photocatalytic properties of silver oxide loaded bismuth vanadate[J]. Chinese Journal of Chemical Engineering, 2014, 22(8): 909-913.
- [11] Jia Z H, Li T, Zheng Z F, et al. The BiOCl/diatomite composites for rapid photocatalytic degradation of ciprofloxacin: efficiency, toxicity evaluation, mechanisms and pathways[J]. Chemical Engineering Journal, 2020, 380: 122422.
- [12] Zhang Y L, Wang D J, Zhang G K. Photocatalytic degradation of organic contaminants by TiO₂/sepiolite composites prepared at low temperature[J]. Chemical Engineering Journal, 2011, 173(1): 1-10.
- [13] Han X, Zhang Y, Li L Y, et al. Nanosized hydroxyapatite supported on natural sepiolite: a novel adsorbent for Cd(II) removal from simulated groundwater[J]. Materials Research Express, 2019, 6(12): 125518.
- [14] 马烁,熊双莲,熊力,等. 铁改性海泡石吸附镉和砷效果及其影响因素[J]. 水处理技术, 2019, 45(10): 73-77.
 Ma S, Xiong S L, Xiong L, et al. Adsorption efficiency of cadmium and arsenic by iron-modified sepiolite and its influencing factors[J]. Technology of Water Treatment, 2019, 45(10): 73-77. (in Chinese)
- [15] Wang P S, Qi C X, Hao L Y, et al. Sepiolite/Cu₂O/Cu photocatalyst: preparation and high performance for degradation of organic dye[J]. Journal of Materials Science & Technology, 2019, 35(3): 285-291.
- [16] Hu X L, Sun Z M, Song J Y, et al. Synthesis of novel ternary heterogeneous BiOCl/TiO₂/sepiolite composite with enhanced visible-light-induced photocatalytic activity towards tetracycline[J]. Journal of Colloid and Interface Science, 2019, 533: 238-250.
- [17] Sayas S, Chica A. Furfural steam reforming over Ni-based catalysts. Influence of Ni incorporation method [J]. International Journal of Hydrogen Energy, 2014, 39(10): 5234-5241.
- [18] Papoulis D, Panagiotaras D, Tsigrou P, et al. Halloysite and sepiolite-TiO₂ nanocomposites: synthesis characterization and photocatalytic activity in three aquatic wastes[J]. Materials Science in Semiconductor Processing, 2018, 85: 1-8.
- [19] Akkari M, Aranda P, Belver C, et al. ZnO/sepioliteheterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater[J]. Applied Clay Science, 2018, 156: 104-109.
- [20] 刘蕊蕊, 冀志江, 谭建杰, 等. 海泡石基金属氧化物复合材料的合成及其光催化性能研究进展[J]. 材料导报, 2017,

96. (in Chinese)

31(9): 152-157, 171.

Lui R R, Ji Z J, Tan J J, et al. Advances in preparation and photocatalytic properties of sepiolite-based metal oxide compounds[J]. Materials Review, 2017, 31(9): 152-157, 171.(in Chinese)

- [21] Wang Y, Tan G Q, Liu T, et al. Photocatalytic properties of the g-C₃ N₄/{010} facets BiVO₄ interface Z-Scheme photocatalysts induced by BiVO₄ surface heterojunction[J]. Applied Catalysis B: Environmental, 2018, 234: 37-49.
- [22] Deng Y C, Tang L, Feng C Y, et al. Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C₃ N₄ nanosheets/BiVO₄ photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation [J]. Journal of Hazardous Materials, 2018, 344: 758-769.
- [23] Zhao B, Yi H H, Tang X L, et al. Using CuO-MnO_x/AC-H as catalyst for simultaneous removal of Hg and NO from coal-fired flue gas[J]. Journal of Hazardous Materials, 2019, 364: 700-709.
- [24] Xu X, Du M, Chen T, et al. New insights into Ag-doped BiVO₄ microspheres as visible light photocatalysts[J]. RSC Advances, 2016, 6(101): 98788-98796.
- [25] Yu S Y, Huang X. Photodegradation of soluble microbial products (SMPs) from membrane bioreactor by GO-COOH/ TiO₂/Ag[J]. Journal of Environmental Sciences, 2020, 88: 292-300.
- [26] Song M T, Wu Y H, Xu C, et al. Synergistic effects of multi-active sites in silver modified Bi-BiVO₄ toward efficient reduction of aromatic nitrobenzene[J]. Journal of Hazardous Materials, 2019, 368: 530-540.
- [27] Zhang K F, Liu Y X, Deng J G, et al. Co-Pd/BiVO₄: high-performance photocatalysts for the degradation of phenol under visible light irradiation[J]. Applied Catalysis B: Environmental, 2018, 224: 350-359.
- [28] Jiang R B, Li B X, Fang C H, et al. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications[J]. Advanced Materials, 2014, 26(31): 5274-5309.

(编辑 郑 洁)

(上接第 108 页)

[41] 孔郑磊,李晓晨,杨继利,等.改性荔枝皮对水中 Pb(Ⅱ)的动态吸附特性[J].环境科学研究,2014,27(10): 1186-1192.

Kong Z L, Li X C, Yang J L, et al. Biosorption of Pb (Ⅱ) by modified lychee pericarps in fixed-bed columns[J]. Research of Environmental Sciences, 2014, 27(10):1186-1192. (in Chinese)

- [42] Yan G, Viraraghavan T, Chen M. A new model for heavy metal removal in a biosorption column[J]. Adsorption Science & Technology, 2001, 19(1):25-43.
- [43] Tan X, Liu Y, Zeng G, et al. Application of biochar for the removal of pollutants from aqueous solutions [J]. Chemosphere, 2015, 125: 70-85.
- [44] An Q, Li X Q, Nan H Y, et al. The potential adsorption mechanism of the biochars with different modification processes to Cr(VI)[J]. Environmental Science and Pollution Research, 2018, 25(31): 31346-31357.
- [45] Silva A M, Cordeiro F C M, Cunha E C, et al. Fixed-bed and stirred-tank studies of manganese sorption by calcite limestone[J]. Industrial & Engineering Chemistry Research, 2012, 51(38): 12421-12429.
- [46] Kara I, Tunc D, Sayin F, et al. Study on the performance of metakaolin based geopolymer for Mn([]) and Co([]) removal[J]. Applied Clay Science, 2018, 161: 184-193.
- [47] 陈志冉, 闫凯. 活性炭对地下水中锰的动态吸附实验研究[J].工业安全与环保, 2013, 39(5):17-19. Chen Z R, Yan K. The study of dynamic adsorption test of activated carbon to manganese in the groundwater[J]. Industrial Safety and Environmental Protection, 2013, 39(5): 17-19. (in Chinese)
- [48] Zhang Y, Zhao J, Jiang Z, et al. Biosorption of Fe(II) and Mn(II) Ions from aqueous solution by rice husk ash[J]. Biomed Research International, 2014, 2014: 973095.