Influences of Y on the microstructures and mechanical properties of Mg-12Gd-1Zn-0.6Zr magnesium alloys

PAN Fusheng1a,1b, YANG Fan1a, YANG Mingbo2, TANG Aitao1a,1b

(1a. College of Materials Science and Engineering; 1b. National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China; 2. Materials Science and Engineering College, Chongqing Institute of Technology, Chongqing 400054, China)

Abstract: To develop Mg-Gd-Y based high-strength alloys and widen the application of magnesium alloys, the effects of Y addition on the microstructure and mechanical properties of Mg-12Gd-1Zn-0.6Zr alloy are investigated by using both optical and electron microscopy, X-ray diffraction (XRD), differential scanning calorimetric (DSC) analysis and tensile test. The results indicate that adding 2\% Y to the Mg-12Gd-1Zn-0.6Zr alloy does not cause an obvious change in the as-cast microstructure of the alloy. However, after adding 3\% and 4\% Y, the as-cast microstructure of the alloy is coarsened, and simultaneously the morphology of the secondary phases in the alloy is changed from the initial discontinuous fine network to thick skeleton-like frame. Furthermore, adding 2\%-4\% Y to the Mg-12Gd-1Zn-0.6Zr alloy can also refine the grains of the as-extruded alloy, and adding 2\% and 3\% Y can obtain higher refining efficiency than adding 4\% Y. In addition, adding 2\%-4\% Y to the Mg-12Gd-1Zn-0.6Zr alloy can also effectively improve the ultimate tensile strength and yield strength of the as-extruded alloy, and the ultimate tensile strength, yield strength and elongation of the as-extruded alloy with the addition of 2\% Y can reach 348.8 MPa, 256.8 MPa, and 14.7\%, respectively.

Key words: magnesium alloys; Mg-Gd-Y alloy; microstructure; mechanical properties

1 试验材料及方法

笔者所用试验合金的名义成分(质量分数，%)分别为：Mg-Gd-12Gd-1Zn-0.6Zr(GWZ120合金)、Mg-Gd-2Y-1Zn-0.6Zr(GWZ122合金)、Mg-Gd-3Y-1Zn-0.6Zr(GWZ123合金)和Mg-Gd-4Y-1Zn-0.6Zr(GWZ124合金)。由于合金配料时充分考虑了合金元素的烧损率，因此试验合金的实际成分与名义成分基本吻合，实际合金成分见表1。制备试验合金的原材料分别为纯Mg和纯Zn(＞99.99%)以及Mg-30%Gd、Mg-30%Y和Mg-25%Zr中间合金。试验合金的熔炼在坩埚电阻炉中进行。熔炼时首先将纯Mg和纯Zn熔化，然后将合金熔体温度升到730℃并加入中间合金，待中间合金熔化后进行搅拌除渣，搅拌除渣后将合金熔体静置10min，然后将其浇注于已预热的金属模具中，待其冷却凝固后取样作组织分析。在试验时，将合金熔体温度升到480℃×8h均匀化处理后，在480℃进行挤压变形，其中挤压比和挤压速度分别为10:1和6mm/s，待挤压完成后再取样作挤压组织分析和力学性能测试。此外，为了解试验合金的凝固行为，对试验合金进行了DSC差热分析。DSC差热分析在Netesch STA449C型热分析仪上进行，从浇铸杯取出30g左右的试样，在氩气保护下将试样在50min内从30℃加热到700℃，然后冷却到100℃。其中加热和冷却速率控制在15K/min。

将铸态、均匀化和挤压合金都用苦味酸(酒精与乙酸比例为8:1)苦味酸饱和腐蚀后，用Neophot-30金相显微镜观察。在OLYPUS相机下拍摄金相照片，并用配有EDS装置的Tescan VegaⅡ型扫描电镜上观察组织，同时按GBT6394—2002标准采用直线截点法测量合金晶粒尺寸。此外，在140kV和150mA下用Rigaku D/Max-1200X型X射线衍射仪分析合金的相组成。而合金的室温拉伸性能测试在CMT5000微机控制电子万能试验机上进行，拉伸试验机的拉伸速度为3mm/min，试验结果取3次的平均值。

2 结果与分析

2.1 试验合金的铸态组织和均匀化组织

图1显示了铸态试验合金的DSC加热曲线。从图1中可以看到，所有试验合金均有两个明显的放热峰，并且峰值相差不大，说明Y含量变化对Mg-Gd-12Gd-1Zn-0.6Zr合金凝固过程中的相变类型影响不大。图2显示了铸态试验合金的XRD结果。从图2中可以看出，在未添加Y的试验合金主要由α-Mg和Mg,Gd和Mg,Gd,而添加质量分数为2%~4%的Y后，合金中还出现Mg3Gd新相。由于试验合金中Gd,Y和Zn等可能会相互置换形成复杂的化合物。因此，未添加Y的试验合金中的Mg,Gd相可能为Mg5(Gd3Zn)相，而含Y的试验合金中的Mg,3Gd和Mg3Gd,Y相则可能会分别以Mg,(Gd,Y,Zn)和Mg3(Gd,Y,Zn)相的形式存在。然而，这还需要进一步的证实。
二相的 Mg/(Gd+Y+Zn) 原子比分别为 4.20, 3.88 和 5.35, 说明含 Y 试验合金均由固溶了 Gd, Y 和 Zn 的 α-Mg 相, Mg₅(Gd, Y, Zn) 和 Mg₁₇(Gd, Y, Zn)_₃ 共晶相组成。

图 3 和图 4 分别为试验合金铸态组织的金相照片和 SEM 照片。从图 3 和图 4 可以看出，所有试验合金均为典型的包晶组织。由非常发达的 α-Mg 和沿晶界不连续分布的网状第二相组成。与未含 Y 的试验合金相比，添加 2% Y 后合金的铸态组织变化不大，但 Y 添加量增加到 3% 和 4% 后，试验合金的铸态组织粗化，同时网状第二相的数量逐渐增加，并且第二相的形态也由细小网状逐渐变成相互连接的粗大骨骼状。从试验合金的 EDS 结果（见表 2），可以看出，未添加 Y 的试验合金中第二相主要包括 Mg, Gd 和 Zn 3 种元素且 Mg/(Gd+Zn) 原子比约为 4.49，说明试验合金中的第二相为 Mg₅(Gd, Zn)。而对于含 Y 的试验合金，随着 Y 添加量从 2% 增加到 4%，基体中 Y 元素的浓度明显增加，并且网状第

<table>
<thead>
<tr>
<th>合金</th>
<th>分析位置</th>
<th>Mg</th>
<th>Gd</th>
<th>Y</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWZ120</td>
<td>基体</td>
<td>98.64</td>
<td>1.36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>共晶相</td>
<td>81.81</td>
<td>12.25</td>
<td>0.33</td>
<td>5.95</td>
</tr>
<tr>
<td>GWZ122</td>
<td>基体</td>
<td>83.99</td>
<td>1.35</td>
<td>0.33</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>共晶相</td>
<td>54.10</td>
<td>7.37</td>
<td>1.92</td>
<td>3.59</td>
</tr>
<tr>
<td>GWZ123</td>
<td>基体</td>
<td>93.20</td>
<td>1.44</td>
<td>0.61</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>共晶相</td>
<td>59.66</td>
<td>7.83</td>
<td>3.19</td>
<td>4.34</td>
</tr>
<tr>
<td>GWZ124</td>
<td>基体</td>
<td>88.46</td>
<td>1.55</td>
<td>1.18</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>共晶相</td>
<td>72.34</td>
<td>6.95</td>
<td>3.99</td>
<td>2.59</td>
</tr>
</tbody>
</table>
从图5可以看到，试验合金经均匀化退火后，铸态组织中原始的包晶组织基本消失，并且晶界上不连续分布的网状第二相部分溶入了α-Mg基体和部分转变成晶界处堆垛层错X相，说明有可能发生了β-Mg₃(α-Gd,α-Y,α-Zn)/α-Mg，(α-Gd,α-Y,α-Zn)→X的转变。而对于含Y试验合金，随着Y含量由2%增加到4%，均匀化组织中的方块状白色颗粒明显增加，经EDS结果分析并结合已有的研究[14]，白色方块颗粒含Gd,Y量很高，其可能是富稀土颗粒。EDS结果进一步发现，试验合金均匀化组织中晶粒内的片状相和晶界上的网状X相的Gd,Y和Zn含量比基体含量高，其可能是已报道的LPSO结构[9-10,14-16]。

<table>
<thead>
<tr>
<th>合金</th>
<th>σ₀.₂/MPa</th>
<th>σₜ/MPa</th>
<th>δ/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWZ120</td>
<td>175.8</td>
<td>288.7</td>
<td>10.1</td>
</tr>
<tr>
<td>GWZ122</td>
<td>256.8</td>
<td>348.8</td>
<td>14.7</td>
</tr>
<tr>
<td>GWZ123</td>
<td>254.6</td>
<td>338.1</td>
<td>4.8</td>
</tr>
<tr>
<td>GWZ124</td>
<td>225.2</td>
<td>320.3</td>
<td>4.5</td>
</tr>
</tbody>
</table>

表3 试验合金挤压后的室温拉伸性能

Y含量变化对Mg-12Gd-1Zn-0.6Zr镁合金挤压后力学性能的影响可能与Y含量变化引起的组织变化有关。从图6可以看到，试验合金的挤压组织均为等轴晶粒，说明挤压时发生了完全的

图5 试验合金均匀化组织的SEM照片

2.2 试验合金挤压后的力学性能和组织

从表3可以看出，在Mg-12Gd-1Zn-0.6Zr镁合金中添加2%～4%Y可明显提高合金挤压后的抗拉强度和屈服强度，其中添加2%Y使合金挤压后的抗拉强度、屈服强度和延伸率分别达到348.8MPa、256.8MPa和14.7%。但是随着Y添加量增加到3%和4%，试验合金的抗拉强度较添加2%时分别下降3.0%和8.2%，同时延伸率也分别降低68%和69%。结果表明，Y含量变化对Mg-12Gd-1Zn-0.6Zr镁合金挤压后的力学性能存在明显影响。

图6 试验合金挤压组织的金相照片
动态再结晶。依据晶粒测量结果，不同Y含量（0.2%, 3%, 4%)试验合金挤压后的平均晶粒尺寸分别为18.2, 25.7, 5.1um, 表明添加2%~4%Y到Mg-12Gd-1Zn-0.6Zr镁合金中可细化合金挤压后的晶粒。其中添加2%和3%能较添加4%获得更高的细化效果。原因可能与不同Y含量试验合金中的第二相阻碍再结晶晶粒长大作用大小有关。

此外，试验挤压后第二相粒子的多少、形态和分布也会对挤压态性能产生很大的影响。从图6可以得出，含0%和含2%Y试验合金中第二相粒子在横截面和纵截面上呈均匀弥散分布。但对于3%和4%Y的试验合金，其纵截面上的第二相粒子呈明显流线分布和不均匀，而这些有可能造成局部区域在拉伸变形过程中不能充分协调而形成较大的应力集中，从而在微区析出解理台阶，并导致在局部形成二次裂纹，从而使合金的塑性降低。基于上述分析可以初步确定，试验合金挤压后的力学性能差异主要与晶粒细化和第二相强化的影响有关。

试验合金挤压后的力学性能差异还可从合金的拉伸断口形貌得到进一步证实。由图7(a)和(b)可知，含0%和含2%Y试验合金的断口存在较多的韧窝和少量的撕裂棱，说明其断裂方式以韧体断裂为主。但同时发生解理断裂。而含3%Y试验合金的断口存在较多的撕裂棱，韧窝和大量微裂纹。图7(c)，(d)表示有裂纹，裂纹主要沿着α-Mg相晶界及第二相薄弱环节扩展。显然，含3%Y的试验合金显示了韧性断裂为主，局部发生解理断裂为辅的断口形貌。对于4%Y的试验合金，其拉伸断口中出现了大量的解理平台和解理断缺的河流花样，并且发现有大量的微裂纹，说明其断裂形式主要以解理断裂为主。

3 结 论

在Mg-12Gd-1Zn-0.6Zr镁合金中添加不同含量的Y得到如下结论：

1) 添加量为2%时对合金铸态组织的影响不大，但添加3%和4%会导致合金铸态组织粗化，并使合金组织中的第二相由不连续分布的细小网状变成较粗的骨状。

2) 添加量为2%~4%可使合金挤压后的晶粒细化，其中添加2%和3%能较增加4%获得更高的细化效果。

3) 添加量为2%可同时提高合金挤压后的抗拉强度、屈服强度和延伸率，而添加3%和4%虽然也能明显提高合金挤压后的抗拉强度和屈服强度，但会使合金挤压后的延伸率显著降低。

4) 在2%, 3%和4%的3个添加量中，以添加2%相对较好，其可使该合金挤压后的抗拉强度、屈服强度和延伸率分别达到348.8 MPa, 256.8 MPa和14.7%。

参考文献：

[4] Chang J W, Guo X W, He S M, et al. Investigation of the corrosion for Mg-3Gd-3Y-0.4Zr (x = 6, 8, 10, 12

