Galerkin Boundary Element Method for Laplace Equation
Article
Figures
Metrics
Preview PDF
Reference
Related
Cited by
Materials
Abstract:
Galerkin method based on the variation principle is used to solve differential and integral equations. The boundary problem of Laplace equation is changed into the variational equation which is equivalent to the boundary integral equation. Using linear element, it is solved by Galerkin boundary element method. In computation of stiffness matrix, the exactly integral formula is used in the first order integral expression, The numerical integral formula is used in the second order integral expression. Thus the problem of calculation of double singular integral is carried out. The numerical experiments also prove this method is reliable. The error of Galerkin boundary element is tested with numerical experimentation.