artificial neural networksbased prediction of electromagnetic compatibility problems
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    It is necessary to predict electromagnetic compatibility (EMC) for electronic equipment and systems. We proposed a fast EMC prediction approach via artificial neural networks (ANN). By choosing relevant electromagnetic interference parameters as the input prediction features, a back propagation (BP) neural network was used to construct the mapping between the input prediction features and the electromagnetic disturbance response of the sensitive system. The EMC fast prediction BP model was trained and tested by sample sets generated using an electromagnetic computational method. We used this method to predict the crosstalk coupling between two wires. The experimental results show the effectiveness of the proposed method.

    Reference
    Related
    Cited by
Get Citation

李永明,祝言菊,李旭,俞集辉,汪泉弟.电磁兼容的人工神经网络预测技术分析[J].重庆大学学报,2008,31(11):1313~1316

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online:
  • Published:
Article QR Code