Fetal electrocardiogram extraction based on radial basis function neural networks
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A novel method for extracting fetal electrocardiogram (FECG) from the abdominal composite signal of a pregnant woman is proposed. The maternal component in the abdominal electrocardiogram (ECG) signal is a nonlinearly transformed version of the mother's ECG (MECG). This nonlinear relationship was identified using radial basis function (RBF) neural networks. The FECG is extracted by subtracting the nonlinearly transformed version of the MECG from the abdominal ECG signal. The baseline shift and noise in the FECG are suppressed by wavelet packet denoising technique. Experimental results obtained from the actual ECG signals demonstrate the effectiveness of the proposed method in extracting FECG even when it is totally embedded within the maternal(QRS) complex.

    Reference
    Related
    Cited by
Get Citation

蒲秀娟,曾孝平,陈悦君,余炜,韩亮,程军.基于径向基函数神经网络的胎儿心电提取[J].重庆大学学报,2009,32(1):111~115

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online:
  • Published:
Article QR Code