Fault diagnosis of rotating machinery based on self-learning fuzzy spiking neural network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    For fuzziness classific boundry of fault diagnosis of rotating machinery and traditional neural network algorithms difficulted to solve contradiction between application problems example scale and netwok scale,a methord of self-learning fuzzy spiking neural network is put forward. The methord overcomes unavailability of cluster analysis on classific boundry of fault diagnosis of rotating machinery by species encoding of pulse sequence and unsupervised learning. The method shows that it effectively solves boundary fuzziness problem on fault diagnosis of rotating machinery,and greatly improves efficiency of fault diagnosis.

    Reference
    Related
    Cited by
Get Citation

谢志江,谢长贵,陈平.自学习模糊脉冲神经网络的旋转机械诊断[J].重庆大学学报,2013,36(2):18~22

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: March 13,2013
  • Published:
Article QR Code