Study on mechanical behaviors of interface with cemented soil slurry between gravel and concrete by simple shear tests
Article
Figures
Metrics
Preview PDF
Reference
Related
Cited by
Materials
Abstract:
The mechanical behaviors of the interface between coarse-grained soil and concrete are investigated by simple shear tests under conditions of cemented soil slurry (clay mixed with cement grout). The results show that the relation curve between shear stress and shear strain appears stress-strain softening and shear dilatation is significant. The point of peak strength and the position when the shear dilatation occurs are related to normal stress. In addition, shear dilatation occurs before the shear stress reaches peak value. In shear failure state, with the same height, the shear displacement increases as the normal stress increases. While with the same normal stress and at the same height, the shear displacement increases as the concrete content increases. A particle flow model of simple shear test between interface between coarse-grained soil and concrete is constructed by PFC (particle flow code). The disturbed height of the sample and the main influence factors are determined by analyzing the laws of particle motion at different heights inside the sample. The PFC results show disturbed height of the sample is related to maximum particle diameter of the soil, normal stress and roughness of the interface (with or without slurry) etc. In terms of the coarse-grained soil, the shear displacement is significant in the area which is close to the interface and about 3-4 times of the maximum particle diameter, and informed the obvious shear band. Further, the thickness of the interface can be regarded as the value.