Thermal error compensation technology of CNC machine tools based on Grey Model(1,4)
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [19]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To reduce the influence of temperature field on the machining accuracy of machine tools, we analyze the heat source composition and the thermal error mechanism in the production process of CNC machine tools, select 4 key points for temperature-measuring from the original 8 temperature-measuring points according to the theory of grey relational degree, and establish a grey (4,1) prediction model. The model builds the mapping relationship between the changes of the 4 key points and the thermal error of machine tools. It can predict the thermal error of machine tools in real time by acquiring the temperature of the key points and then compensate the predicted thermal error to the tool feed position, and thus a machine thermal error compensation mechanism is formed. The precision horizontal machining center experiment THM6380 is taken as the experimental object, the gap between the test results of GM(4,1) model and the actual thermal error value is calculated, and the fitting residual error is within ±1 μm, which shows the fitting effect is good.

    Reference
    [1] 王海同,李铁民,王立平,等.机床热误差建模研究综述[J].机械工程学报,2015,51(9):119-128. WANG Haitong, Li Tiemin, Wang Liping, et al. Review on thermal error modeling of machine tools[J]. Journal of Mechanical Engineering, 2015, 51(9):119-128. (in Chinese)
    [2] 张根保,刘杰,高琦樑,等.多台数控机床不完全维修的可靠性评估[J].重庆大学学报,2014,37(2):1-6. Zhang Genbao, Liu Jie, Gao Qiliang, et al. Reliability assessment of mulity NC machine Tools with imperfect repair[J]. Journal of Chongqing University, 2014, 37(2):1-6. (in Chinese)
    [3] Ramesh R, Mannan M A, Poo A N. Error compensation in machine tools-a review:Part Ⅱ:thermal errors[J]. International Journal of Machine Tools and Manufacture, 2000, 40(9):1257-1284.
    [4] Abdulshahed A, Longstaff A P, Fletcher S, et al. The application of ANFIS prediction models for thermal error compensation on CNC machine tools[J]. Applied Soft Computing, 2015, 27:158-168.
    [5] Lee J, Kramer B M. Analysis of machine degradation using a neural network based pattern discrimination model[J]. Journal of Manufacturing Systems, 1993, 12(5):379-387.
    [6] Han J, Wang L, Wang H, et al. A new thermal error modeling method for CNC machine tools[J]. International Journal of Advanced Manufacturing Technology, 2012, 62(1/2/3/4):205-212.
    [7] Abdulshahed A, Longstaff A P, Fletcher S, et al. Application of GNNMCI(1,N) to environmental thermal error modelling of CNC machine tools[C]//The the 3rd International Conference on Advanced Manufacturing Engineering and Technologies,Stockholm, 2013:253-262.
    [8] Zhang T, Ye W H, Liang R J, et al. Temperature variable optimization for precision machine tool thermal error compensation on optimal threshold[J]. Chinese Journal of Mechanical Engineering, 2013, 26(1):158-165.
    [9] 姜辉.五轴数控机床几何与热误差实时补偿关键技术及其试验研究[D].上海:上海交通大学,2014. JIANG Hui. Key technologies and experimental research of real-time compensation for geometrical and thermal errors of five-axis CNC machine tool[D]. Shanghai:Shanghai Jiao Tong University, 2014. (in Chinese)
    [10] 刘飞,徐宗俊.机床主传动系统能量传输数学模型[J].重庆大学学报(自然科学版),1990,13(2):13-19. LIU Fei, Xu Zongjun. Energy transmission mathematical models of main driving system of machine tools[J]. Journal of Chongqing University (Natural Science Edition), 1990,13(2):13-19. (in Chinese)
    [11] Tan B, Mao X, Liu H, et al. A thermal error model for large machine tools that considers environmental thermal hysteresis effects[J]. International Journal of Machine Tools and Manufacture, 2014, 82/83(7):11-20.
    [12] Velmurugan T. Performance based analysis between k-Means and Fuzzy C-Means clustering algorithms for connection oriented telecommunication data[J]. Applied Soft Computing, 2014, 19(6):134-146.
    [13] Rizal M, Ghani J A, Nuawi M Z, et al. Online tool wear prediction system in the turning process using an adaptive neuro-fuzzy inference system[J]. Applied Soft Computing, 2013, 13(4):1960-1968.
    [14] 张成新,高峰,李艳.基于实时反馈的机床热误差在线补偿模型[J].中国机械工程,2015,26(3):361-365. ZHANG Chengxin, GAO Feng, LI Yan. On-ling compensation model based on real-time feedback thermal errors of machine tools[J]. China Mechanical Engineering, 2015, 26(3):361-365. (in Chinese)
    [15] 王乾俸,张松,陈舟,等.基于指数函数的机床主轴热误差补偿模型[J].计算机集成制造系统,2015,21(6):1553-1558. WANG Qiangfeng, ZHANG Song, CHEN Zhou, et al. Thermal error compensation model of machine spindle based on exponential function[J]. Computer integrated manufacturing system, 2015, 21(6):1553-1558. (in Chinese)
    [16] 苗恩铭,龚亚运,徐祗尚,等.数控机床热误差补偿模型稳健性比较分析[J].机械工程学报,2015(7):130-135. MIAO Enming, GONG Yayun, XU Zhishang, et al. Comparative analysis of thermal error compensation model robustness of CNC machine tools[J]. Journal of Mechanical Engineering, 2015(7):130-135. (in Chinese)
    [17] 曹华军,杜彦斌,刘飞.机床再制造综合测试与评价支持系统的开发及应用[J].重庆大学学报:自然科学版,2009,32(11):1262-1267. CAO Huajun, DU Yanbin, LIU Fei. Development and evaluation system for machine tool remanufactruing[J]. Journal of Chongqing University, 2009, 32(11):1262-1267. (in Chinese)
    [18] 张毅,杨建国.基于灰色神经网络的机床热误差建模[J].上海交通大学学报,2011,45(11):1581-1586. ZHANG Yi, YANG Jianguo. Grey neural network modeling for machine tool thermal error[J]. Journal of Shanghai Jiao Tong University, 2011, 45(11):1581-1586. (in Chinese)
    [19] 李永祥,杨建国.灰色系统模型在机床热误差建模中的应用[J].中国机械工程,2006,17(23):2439-2442. LI Yongxiang, YANG Jiangguo. Application of grey system model to thermal error modeling on machine tools[J]. China Mechanical Engineering, 2006, 17(23):2439-2442. (in Chinese)
    Cited by
Get Citation

鞠萍华,黄洛.基于灰色GM(1,4)模型的数控机床热误差补偿技术[J].重庆大学学报,2017,40(10):23~29

Copy
Share
Article Metrics
  • Abstract:1010
  • PDF: 1499
  • HTML: 511
  • Cited by: 0
History
  • Received:May 10,2017
  • Online: November 02,2017
Article QR Code