Research progress on intermetallic compounds and solid solutions of Mg alloys based on first-principlescalculation
CSTR:
Author:
Clc Number:

TG146

  • Article
  • | |
  • Metrics
  • |
  • Reference [93]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    As one of the lightest metal materials, Mg alloys have a broad application prospect, and it has been one of the focuses to develop advanced Mg alloys at present. First-principles calculation provides a cost-effective method for development and design of advanced Mg alloys. Based on first-principles calculation methods, researches on intermetallic compounds and solid solutions of Mg alloys are reviewed. The research work on crystal structure, elastic constant, elastic modulus and generalized stacking fault energy of Mg alloys by first-principles calculation is introduced,and the effects of alloying elements and phase structures on mechanical properties of Mg alloys are also discussed, aiming to to illustrate that the first-principles computation plays an important role in the development of Mg alloys. And we hope that it could provide a theoretical reference for composition design and performance optimization of advanced Mg alloys.

    Reference
    [1] Chen Y, Xu Z, Smith C, et al. Recent advances on the development of magnesium alloys for biodegradable implants[J]. Acta Biomater,2014,10(11):4561-4573.
    [2] Chen X, Geng Y, Pan F. Research progress in magnesium alloys as functional materials[J]. Rare Metal Materials and Engineering, 2016,45(9):2269-2274.
    [3] Zhang H, Zheng X, Tian X, et al. New approaches for rare earth-magnesium based hydrogen storage alloys[J]. Progress in natural science:Materials international, 2017,27(1):50-57.
    [4] Li Q, Liu W, Song X. Research progress of Mg-Re alloys[J]. Advanced Materials Research, 2014,937:178-181.
    [5] Ali Y, Qiu D, Jiang B, et al. Current research progress in grain refinement of cast magnesium alloys:A review article[J]. Journal of Alloys and Compounds, 2015,619:639-651.
    [6] Alaneme K K, Okotete E A. Enhancing plastic deformability of Mg and its alloys:A review of traditional and nascent developments[J]. Journal of Magnesium and Alloys, 2017,5(4):460-475.
    [7] Schrödinger E. On the connection of Heisenberg-Born-Jordan's quantum mechanics with mine[J]. Annalen Der Physik, 1926,79(8):734-756.
    [8] Heisenber G W. Quantum-theoretical reinterpretation of kinematic and mechanical connections[J]. Zeitschrift Für Physik, 1925(33):879-893.
    [9] Zhong Y, Yang M, Liu Z K. Contribution of first-principles energetics to Al-Mg thermodynamic modeling[J]. Calphad, 2005,29(4):303-311.
    [10] Wang J, Li X, Liu D, et al. The investigation on a universal local structural feature in Mg-Al alloys[J]. Computational Materials Science, 2017,140:224-234.
    [11] Huang Z W, Zhao Y H, Hou H, et al. Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg2Si and Al2Y phases from first-principles calculations[J]. Physica B:Condensed Matter, 2012,407(7):1075-1081.
    [12] Ozisik H, Deligoz E, Colakoglu K, et al. The first principles studies of the MgB7 compound:hard material[J]. Intermetallics, 2013,39:84-88.
    [13] Zhang H, Shang S, Saal J E, et al. Enthalpies of formation of magnesium compounds from first-principles calculations[J]. Intermetallics, 2009,17(11):878-885.
    [14] Wang H, Jin H, Chu W, et al. Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method[J]. Journal of Alloys and Compounds, 2010,499(1):68-74.
    [15] Zhou D, Liu J, Xu S, et al. Thermal stability and elastic properties of Mg2X (X=Si, Ge, Sn, Pb) phases from first-principle calculations[J]. Computational Materials Science, 2012,51(1):409-414.
    [16] Wu D H, Wang H C, Wei L T, et al First-principles study of structural stability and elastic properties of MgPd3 and its hydride[J]. Journal of Magnesium and Alloys, 2014,2(2):165-174.
    [17] Deng Y H, Wang T F, Zhang W B, et al. Crystal structure of Mg3Pd from first-principles calculations[J]. Transactions of Nonferrous Metals Society of China, 2008,18(2):416-420.
    [18] Tani J I, Takahashi M, Kido H. Lattice dynamics and elastic properties of Mg3As2 and Mg3Sb2 compounds from first-principles calculations[J]. Physica B:Condensed Matter, 2010,405(19):4219-4225.
    [19] Drief F, Tadger A, Mesri D, et al. First principles study of structural, electronic, elastic and optical properties of MgS, MgSe and MgTe[J]. Catalysis Today, 2004,89(3):343-355.
    [20] Zhou P, Gong H R. Phase stability, mechanical property, and electronic structure of an Mg-Ca system[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012,8:154-164.
    [21] Zhong Y, Sofo J O, Luo A A, et al. Thermodynamics modeling of the Mg-Sr and Ca-Mg-Sr systems[J]. Journal of Alloys and Compounds, 2006,421(1/2):172-178.
    [22] Ganeshan S, Shang S L, Zhang H, et al. Elastic constants of binary Mg compounds from first-principles calculations[J]. Intermetallics, 2009,17(5):313-318.
    [23] Zhang J, Mao C, Long C G, et al. Phase stability, elastic properties and electronic structures of Mg-Y intermetallics from first-principles calculations[J]. Journal of Magnesium and Alloys, 2015,3(2):127-133.
    [24] Wang Y F, Zhang W B, Wang Z Z, et al. First-principles study of structural stabilities and electronic characteristics of Mg-La intermetallic compounds[J]. Computational Materials Science, 2007,41(1):78-85.
    [25] Zhou D W, Peng P, Liu J S. Electronic structure and stability of Mg-Ce intermetallic compounds from first-principles calculations[J]. Journal of Alloys and Compounds, 2007,428(1/2):316-321.
    [26] Ullah N, Murtaza G, Khenata R, et al. Structural, chemical bonding and optoelectronic properties of Mg doped zinc chalcogenides:A first principles study[J]. Materials Science in Semiconductor Processing, 2014,26:681-689.
    [27] Wang C, Han P D, Zhang L, et al. First-principles study on the stabilities of the intermetallic compounds in Mg-Nd aalloys[J]. Rare Metal Materials and Engineering, 2011,40(4):590-594.
    [28] Peng C, Li D, Zeng X, et al. First principles investigation of β'-short and β'-long in Mg-Gd alloy[J]. Journal of Alloys and Compounds, 2016,671:177-183.
    [29] Mogulkoc Y, Ciftci Y O, Kabak M, et al. Ab initio study of the structural, elastic, thermodynamic, electronic and vibration properties of TbMg intermetallic compound[J]. Superlattices and Microstructures, 2014,71:46-61.
    [30] Mao P L, Yu B, Liu Z, et al. Mechanical properties and electronic structures of MgCu2, Mg2Ca and MgZn2 Laves phases by first principles calculations[J]. Transactions of Nonferrous Metals Society of China, 2014,24(9):2920-2929.
    [31] Pavlic O, Ibarra-Hernandez W, Valencia-Jaime I, et al. Design of Mg alloys:The effects of Li concentration on the structure and elastic properties in the Mg-Li binary system by first principles calculations[J]. Journal of Alloys and Compounds, 2017,691:15-25.
    [32] Yu W Y, Wang N, Xiao X B, et al. First-principles investigation of the binary AB2 type Laves phase in Mg-Al-Ca alloy:Electronic structure and elastic properties[J]. Solid State Sciences, 2009,11(8):1400-1407.
    [33] Wu M M, Wen L, Tang BY, et al. First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg-Sc-Zn alloy[J]. Journal of Alloys and Compounds, 2010,506(1):412-417.
    [34] Zhou D, Liu J, Xu S, et al. First-principles investigation of the binary intermetallics in Mg-Al-Sr alloy:Stability, elastic properties and electronic structure[J]. Computational Materials Science, 2014,86:24-29.
    [35] Zhou D W, Liu J S, et al. A first-principles study on electronic structure and elastic properties of Al4Sr, Mg2Sr and Mg23Sr6 phases[J]. Transactions of Nonferrous Metals Society of China, 2011,21(12):2677-2683.
    [36] Wang F, Sun S J, Yu B, et al. First principles investigation of binary intermetallics in Mg-Al-Ca-Sn alloy:Stability, electronic structures, elastic properties and thermodynamic properties[J]. Transactions of Nonferrous Metals Society of China, 2016,26(1):203-212.
    [37] Mao P, Yu B, Liu Z, et al. First-principles calculations of structural, elastic and electronic properties of AB2 type intermetallics in Mg-Zn-Ca-Cu alloy[J]. Journal of Magnesium and Alloys, 2013,1(3):256-262.
    [38] Chen G, Zhang P. First-principles study of electronic structures, elastic properties and thermodynamics of the binary intermetallics in Mg-Zn-Re-Zr alloy[J]. Defence Technology, 2013,9(3):131-139.
    [39] Ali S F, Arab F, Zerroug S, et al. First-principles study of structural and elastic properties of MgSe under hydrostatic pressure[J]. Computational Materials Science, 2008,41(4):538-541.
    [40] Tao X, Ouyang Y, Liu H, et al. Elastic constants of B2-MgRE (RE=Sc, Y, La-Lu) calculated with first-principles[J]. Solid State Communications, 2008,148(7/8):314-318.
    [41] Tang P Y, Wen L, Tong Z F, et al. Stacking faults in B2-structured magnesium alloys from first principles calculations[J]. Computational Materials Science, 2011,50(11):3198-3207.
    [42] Wang R, Wang S, Yao Y, et al. The temperature-dependent elastic properties of B2-MgRE intermetallic compounds from first principles[J]. Physica B:Condensed Matter, 2012,407(1):96-102.
    [43] Uǧur Ş, Uǧur G, Soyalp F, et al. First-principles study of B2-like intermetallics LaMg and YMg[J]. Intermetallics, 2012,22:218-225.
    [44] Zhong Y, Ozturk K, Sofo J O, et al. Contribution of first-principles energetics to the Ca-Mg thermodynamic modeling[J]. Journal of Alloys and Compounds, 2006,420(1/2):98-106.
    [45] Tang B Y, Yu W Y, Zeng X Q, et al. First-principles study of the electronic structure and mechanical properties of CaMg2 Laves phase[J]. Materials Science and Engineering:A, 2008,489(1/2):444-450.
    [46] Wu M M, Jiang Y, Wang J W, et al. Structural, elastic and electronic properties of Mg(Cu1-xZnx)2 alloys calculated by first-principles[J]. Journal of Alloys and Compounds, 2011,509(6):2885-2890.
    [47] Mao P, Yu B, Liu Z, et al. Mechanical, electronic and thermodynamic properties of Mg2Ca Laves phase under high pressure:A first-principles calculation[J]. Computational Materials Science, 2014(88):61-70.
    [48] Yu F, Sun J X, Chen T H. High-pressure phase transitions of Mg2Ge and Mg2Sn:First-principles calculations[J]. Physica B:Condensed Matter, 2011,406(9):1789-1794.
    [49] Li C, Zhang K, Ru J G. Pressure dependence of structural, elastic and electronic of Mg2Y:A first principles study[J]. Journal of Alloys and Compounds, 2015,647:573-577.
    [50] Liu Y, Hu W C, Li D J, et al. Structural, electronic and thermodynamic properties of BiF3-type Mg3Gd compound:A first-principle study[J]. Physica B:Condensed Matter, 2014,432:33-39.
    [51] Luo T P, Ma L, Pan R K, et al. Structural and elastic properties of La2Mg17 from first-principles calculations[J]. Journal of Solid State Chemistry, 2013,206:272-276.
    [52] Zhang X, Ying C, Jiang W, et al. First-principle study of the physics properties of DO3-Mg3Nd compound under high pressure[J]. Superlattices and Microstructures, 2014,73:359-369.
    [53] Aǧduk S, Gökoǧlu G. High-pressure elasticity and lattice dynamics of Mg2La from first principles[J]. Journal of Alloys and Compounds, 2012,520:93-97.
    [54] Mattesini M, Ahuja R, Johansson B. Cubic Hf3N4 and Zr3N4:A class of hard materials[J]. Physical Review B, 2003,68(18).
    [55] Patil S K R, Khare S V, Tuttle B R, et al. Mechanical stability of possible structures of PtN investigated using first-principles calculations[J]. Physical Review B, 2006,73(10).
    [56] Wu Z J, Zhao E J, Xiang H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles[J]. Physical Review B, 2007,76(5).
    [57] Liu Y, Ren H, Hu W C, et al. First-principles calculations of strengthening compounds in magnesium alloy:A general review[J]. Journal of Materials Science & Technology, 2016,32(12):1222-1231.
    [58] Ozisik H, Deligoz E, Colakoglu K, et al. Structural and mechanical stability of rare-earth diborides[J]. Chinese Physics B, 2013,22(4):046202.
    [59] Liu D, Dai X, Wen X, et al. Predictions on the compositions, structures, and mechanical properties of intermediate phases in binary Mg-X (X=Sn, Y, Sc, Ag) alloys[J]. Computational Materials Science, 2015,106:180-187.
    [60] Yang X, Hou H, Zhao Y, et al. First-principles investigation of the structural, electronic and elastic properties of MgxAl4-xSr (x=0, 0.5, 1) phases[J]. Computational Materials Science, 2014,84:374-380.
    [61] Hu Q, Yang R. Mechanical properties of structural materials from first-principles[J]. Current Opinion in Solid State and Materials Science, 2006,10(1):19-25.
    [62] Puge S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954,45(7):823-843.
    [63] Counts W A, Friák M, Raabe D, et al. Using ab initio calculations in designing bcc Mg-Li alloys for ultra-lightweight applications[J]. Acta Materialia, 2009,57(1):69-76.
    [64] Dai J, Song Y, Yang R. Influences of alloying elements and oxygen on the stability and elastic properties of Mg17Al12[J]. Journal of Alloys and Compounds, 2014,595:142-147.
    [65] King W F, Cutler P H. A first principle calculation of the total binding energy and c/a ratio of magnesium[J]. Physics Letters A, 1970,32(6):395-396.
    [66] Smith A E. Surface, interface and stacking fault energies of magnesium from first principles calculations[J]. Surface Science, 2007,601(24):5762-5765.
    [67] Ganeshan S, Shang S L, Wang Y, et al. Effect of alloying elements on the elastic properties of Mg from first-principles calculations[J]. Acta Materialia, 2009,57(13):3876-3884.
    [68] Datta A, Waghmare U V, Ramamurty U. Structure and stacking faults in layered Mg-Zn-Y alloys:A first-principles study[J]. Acta Materialia, 2008,56(11):2531-2539.
    [69] Peng Q, Meng J, Li Y, et al. Effect of yttrium addition on lattice parameter, Young's modulus and vacancy of magnesium[J]. Materials Science and Engineering:A, 2011,528(4/5):2106-2109.
    [70] Cui R, Wang X, Dong Z, et al. First principles study on elastic and thermodynamic properties of Mg1-xZnx alloy[J]. Acta Metallurgica Sinica, 2017,53(9):1133-1139.
    [71] Dai J H, Wu X, Song Y. Influence of alloying elements on phase stability and elastic properties of aluminum and magnesium studied by first principles[J]. Computational Materials Science, 2013,74:86-91.
    [72] Velikokhatnyi O I, Kumta P N. First principles study of the elastic properties of magnesium and iron based bio-resorbable alloys[J]. Materials Science and Engineering:B, 2018,230:20-23.
    [73] Tane M, Kimizuka H, Hagihara K, et al. Effects of stacking sequence and short-range ordering of solute atoms on elastic properties of Mg-Zn-Y alloys with long-period stacking ordered structures[J]. Acta Materialia, 2015,96:170-188.
    [74] Tane M, Nagai Y, Kimizuka H, et al. Elastic properties of an Mg-Zn-Y alloy single crystal with a long-period stacking-ordered structure[J]. Acta Materialia, 2013,61(17):6338-6351.
    [75] Ravindran P, Fast L, Korzhavyi P A, et al. Density functional theory for calculation of elastic properties of orthorhombic crystals:Application to TiSi2[J]. Journal of Applied Physics, 1968,84(9):4891-4904.
    [76] Wu X, Wang R, Wang S. Generalized-stacking-fault energy and surface properties for HCP metals:A first-principles study[J]. Applied Surface Science, 2010,256(11):3409-3412.
    [77] Fan T W, Tang B Y, Peng L M, et al. First-principles study of long-period stacking ordered-like multi-stacking fault structures in pure magnesium[J]. Scripta Materialia, 2011,64(10):942-945.
    [78] Li F, Wu X, Wang R, et al. The transformation pathways for vitual long period stacking-ordered Mg:First-principles study[J]. Computational Materials Science, 2016,114:1-12.
    [79] Han J, Su X M, Jin Z H, et al. Basal-plane stacking-fault energies of Mg:A first-principles study of Li-and Al-alloying effects[J]. Scripta Materialia, 2011,64(8):693-696.
    [80] Wang H Y, Zhang N, Wang C, et al. First-principles study of the generalized stacking fault energy in Mg-3Al-3Sn alloy[J]. Scripta Materialia, 2011,65(8):723-726.
    [81] Zhang H Y, Wang H Y, Wang C, et al. First-principles calculations of generalized stacking fault energy in Mg alloys with Sn, Pb and Sn+Pb dopings[J]. Materials Science and Engineering:A, 2013,584:82-87.
    [82] Yasi Ja, Hector L G, Trinkle D R. Prediction of thermal cross-slip stress in magnesium alloys from a geometric interaction model[J]. Acta Materialia, 2012,60(5):2350-2358.
    [83] Zhang Q, Fu L, Fan T W, et al. Ab initio study of the effect of solute atoms Zn and Y on stacking faults in Mg solid solution[J]. Physica B-Condensed Matter, 2013,416:39-44.
    [84] Sandlöbes S, Friák M, Zaefferer S, et al. The relation between ductility and stacking fault energies in Mg and Mg-Y alloys[J]. Acta Materialia, 2012,60(6/7):3011-3021.
    [85] Cui X Y, Yen H W, Zhu S Q, et al. On the universality of Suzuki segregation in binary Mg alloys from first principles[J]. Journal of Alloys and Compounds, 2015,620:38-41.
    [86] Dong Q, Luo Z, Zhu H, et al. Basal-plane stacking-fault energies of Mg alloys:A first-principles study of metallic alloying effects[J]. Journal of Materials Science & Technology, 2018.
    [87] Zhang J, Dou Y, Liu G, et al. First-principles study of stacking fault energies in Mg-based binary alloys[J]. Computational Materials Science, 2013,79:564-569.
    [88] Wang C, Zhang H Y, Wang H Y, et al. Effects of doping atoms on the generalized stacking-fault energies of Mg alloys from first-principles calculations[J]. Scripta Materialia, 2013,69(6):445-448.
    [89] Rice J R. Dislocation nucleation from a crack tip:an analysis based on the Peierls concept[J]. Journal of the Mechanics and Physics of Solids, 1992,40(2):239-271.
    [90] Zhang J, Dou Y, Dong H. Intrinsic ductility of Mg-based binary alloys:A first-principles study[J]. Scripta Materialia, 2014,89:13-16.
    [91] Zhou L, Su K, Wang Y, et al. First-principles study of the properties of Li, Al and Cd doped Mg alloys[J]. Journal of Alloys and Compounds, 2014,596:63-68.
    [92] Wang C, Han P, Zhang L, et al. The strengthening effect of Al atoms into Mg-Al alloy:A first-principles study[J]. Journal of Alloys and Compounds, 2009,482(1/2):540-543.
    [93] Wang C, Huang T L, Wang H Y, et al. Effects of distributions of Al, Zn and Al+Zn atoms on the strengthening potency of Mg alloys:A first-principles calculations[J]. Computational Materials Science, 2015,104:23-28.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

柳杨璐,刘婷婷,潘复生.基于第一性原理的镁合金合金相及固溶体研究进展[J].重庆大学学报,2018,41(10):30~44

Copy
Share
Article Metrics
  • Abstract:1352
  • PDF: 1157
  • HTML: 962
  • Cited by: 0
History
  • Received:March 18,2018
  • Online: October 22,2018
Article QR Code