Experiments on the impact pressure of high-pressure water jet under different nozzle shapes
CSTR:
Author:
Clc Number:

O358

  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The flexible impact force of water jet is the mechanics criterion of material breakage by water jet. The nozzle shape has a great influence on the impact pressure. Five different nozzles were designed in this paper, and the impacting tests were conducted based on the self-designed jet-impact test platform. PVDF piezoelectric film sensor and the high speed camera were used to record the experimental data. It's indicated that water jet beam from the circular nozzle presents the best strand integrity. The shock wave induced by impacting from the circular nozzle has a great influence on the diffusion form of the liquid. These features cause the highest central impact pressure of circular nozzle. The impact pressures of water jets from square, triangular and cross-shaped nozzles are much lower than that of circular nozzle. The water jet from elliptical nozzle is the most divergent and its impact pressure is the smallest consequently. The peak pressures from all shape nozzles present nonlinear relationships with the pump pressure, but the duration time of these peak pressures nearly keep constant with the pump pressure.

    Reference
    [1] 何小婷. 不同喷嘴形状的自振脉冲喷嘴数值模拟与实验研究[D]. 株洲:湖南工业大学, 2014.HE Xiaoting. Numerical simulation and experimental research on self-excited oscillation pulsed nozzle of different nozzle shape[D]. Zhuzhou:Hunan University of Technology, 2014.(in Chinese)
    [2] 禹言芳, 李春晓, 孟辉波, 等. 不同形状喷嘴的射流流动与卷吸特性[J]. 过程工程学报, 2014, 14(4):549-555.YU Yanfang, LI Chunxiao, MENG Huibo, et al. Flow and entrainment characteristics of jet from different shape nozzles[J]. The Chinese Journal of Process Engineering, 2014, 14(4):549-555.(in Chinese)
    [3] 杨敏官, 肖胜男, 康灿, 等. 出口形状对中心体喷嘴射流性能的影响[J]. 流体机械, 2011, 39(5):13-19.YANG Minguan, XIAO Shengnan, KANG Can, et al. Influence of outlet profile on performance of central-body nozzle[J]. Fluid Machinery, 2011, 39(5):13-19.(in Chinese)
    [4] Rouly E, Warkentin A, Bauer R. Design and testing of low-divergence elliptical-jet nozzles[J]. Journal of Mechanical Science and Technology, 2015, 29(5):1993-2003.
    [5] Rouly E, Bauer R J, Warkentin A. An investigation into the effect of nozzle shape and jet pressure in profile creepfeed grinding[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2017, 231(7):1116-1130.
    [6] 周小引, 李红, 蒋跃. 低压喷头异形喷嘴水量分布均匀性试验研究[J]. 排灌机械工程学报, 2017, 35(5):448-453.ZHOU Xiaoyin, LI Hong, JIANG Yue. Study on water distribution uniformity of non-circular nozzles at low pressure[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(5):448-453.(in Chinese)
    [7] 恽强龙, 向清江, 李红. 几种异形喷嘴喷射的液气射流泵性能试验研究[J]. 流体机械, 2011, 39(11):1-4, 16.YUN Qianglong, XIANG Qingjiang, LI Hong. Experimental study on the performance of liquid jet gas pump with non-circular nozzle[J]. Fluid Machinery, 2011, 39(11):1-4, 16.(in Chinese)
    [8] 陈冬林, 贠英, 米建春, 等. 菱形自由射流与圆形自由射流流动特性的粒子图像测速研究[J]. 中国电机工程学报, 2012, 32(17):76-81.CHEN Donglin, YUN Ying, MI Jianchun, et al. Particle image velocimetry measurements of turbulent jets issuing from diamond and circular orifice plates[J]. Proceedings of the CSEE, 2012, 32(17):76-81.(in Chinese)
    [9] 李栋, 卢晓江, 赵欣. 异形喷嘴低压射流形态的实验研究[J]. 轻工机械, 2006, 24(3):18-20.LI Dong, LU Xiaojiang, ZHAO Xin. Experimental study on low pressure jet characteristic of the non-circle jet nozzle[J]. Light Industry Machinery, 2006, 24(3):18-20.(in Chinese)
    [10] 左海宁, 白璐, 周家日, 等. 异形喷嘴内部流场的可视化研究[J]. 湖南工业大学学报, 2013, 27(1):43-47.ZUO Haining, BAI Lu, ZHOU Jiari, et al. Visualization research on the internal flow field of non-circle nozzle[J]. Journal of Hunan University of Technology, 2013, 27(1):43-47.(in Chinese)
    [11] Singh D, Premachandran B, Kohli S. Effect of nozzle shape on jet impingement heat transfer from a circular cylinder[J]. International Journal of Thermal Sciences, 2015, 96:45-69.
    [12] Vinze R, Chandel S, Limaye M D, et al. Influence of jet temperature and nozzle shape on the heat transfer distribution between a smooth plate and impinging air jets[J]. International Journal of Thermal Sciences, 2016, 99:136-151.
    [13] 魏洋洋, 袁寿其, 李红, 等. 异形喷嘴变量喷头水力性能试验[J]. 农业机械学报, 2011, 42(7):70-74.WEI Yangyang, YUAN Shouqi, LI Hong, et al. Hydraulic performance experiment of the variable-rate sprinkler with non-circle nozzle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(7):70-74.(in Chinese)
    [14] 唐川林, 王晓明, 胡东, 等. 自振脉冲喷嘴中异形结构对射流振荡频率的影响[J]. 矿山机械, 2015, 43(1):15-20.TANG Chuanlin, WANG Xiaoming, HU Dong, et al. Influence of special-outlet self-exciting oscillation pulsed nozzle on oscillation frequency[J]. Mining & Processing Equipment, 2015, 43(1):15-20.(in Chinese)
    [15] 赵欣. 异形喷嘴射流特性的实验研究[D]. 天津:天津科技大学, 2005.ZHAO Xin. Experimental study on the jet characteristic of non-circle jet nozzle[D]. Tianjin:Tianjin University of Science & Technology, 2005.(in Chinese)
    [16] 司鹄, 王丹丹, 李晓红. 高压水射流破岩应力波效应的数值模拟[J]. 重庆大学学报(自然科学版), 2008, 31(8):942-945, 950.SI Hu, WANG Dandan, LI Xiaohong. Stress wave effect in numerical simulation on rock breaking under high-pressure water jet[J]. Journal of Chongqing University(Natural Science Edition), 2008, 31(8):942-945, 950.(in Chinese)
    [17] Lu Y Y, Huang F, Liu X C, et al. On the failure pattern of sandstone impacted by high-velocity water jet[J]. International Journal of Impact Engineering, 2015, 76:67-74.
    [18] 黄飞. 水射流冲击瞬态动力特性及破岩机理研究[D]. 重庆:重庆大学, 2015.HUANG Fei. On the transient dynamics of water jet impinging target and the mechanism of water jet breaking rock[D]. Chongqing:Chongqing University, 2015.(in Chinese)
    [19] Huang F, Li S Q, Zhao Y L, et al. Study on lateral jetting range during an arc-curved jet impacting nonplanar solid surfaces[J]. Journal of Fluids Engineering, 2018, 140(10):101-102.
    [20] Bowden F P, Field J E. The brittle fracture of solids by liquid impact, by solid impact, and by shock[J]. Proceedings of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences, 1964, 282(1390):331-352.
    [21] 黄飞, 卢义玉, 李树清, 等. 高压水射流冲击速度对砂岩破坏模式的影响研究[J]. 岩石力学与工程学报, 2016, 35(11):2259-2265.HUANG Fei, LU Yiyu, LI Shuqing, et al. Influence of velocity of high-pressure water jet on failure patterns of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11):2259-2265.(in Chinese)
    [22] 陆朝晖. 高压脉冲水射流流场结构的数值模拟及破硬岩机理研究[D]. 重庆:重庆大学, 2012.LU Zhaohui. CFD modeling on flow-field structure of high pressure pulse water jet and its hard rock fragmentation mechanism[D]. Chongqing:Chongqing University, 2012.(in Chinese)
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

黄飞,胡斌,左伟芹,李树清.不同形状喷嘴的高压水射流冲击力特性实验[J].重庆大学学报,2019,42(9):123~132

Copy
Share
Article Metrics
  • Abstract:835
  • PDF: 1846
  • HTML: 1019
  • Cited by: 0
History
  • Received:March 01,2019
  • Online: October 25,2019
Article QR Code