Study on deteriorating moment-curvature model based on modified Ibarra-Medina-Krawinkler hysteretic rules
CSTR:
Author:
Clc Number:

TU375.3

  • Article
  • | |
  • Metrics
  • |
  • Reference [23]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Based on Modified Ibarra-Medina-Krawinkler (ModIMK) hysteretic rules, a new moment-curvature model is proposed in this paper, which can be used to define the section of plastic hinge zone of Beam With Hinges Element in OpenSees. The envelope curve of the moment-curvature model is idealized as tri-linear curve and equations that are capable of predicting the key points of skeleton curve are given. The accuracy of the model is calibrated by the test results of 62 RC columns, and it is found that both the yield displacement and longitudinal rebar buckling displacement can be well predicted. ModIMK hysteresis model can be used to simulate the degradation of the strength and stiffness in plastic hinge area under cyclic loading. The numerical simulations are conducted to model the columns tested by cyclic load and shaking table test, and the results show that the moment-curvature model in conjunction with plastical hinge element can accurately predict the response of RC columns under seismic loadings.

    Reference
    [1] Scott M, Fenves G. Plastic hinge integration methods for force-based beam-column elements[J]. Journal of Structural Engineering, 2006, 132(2):244-252.
    [2] Ibarra L F, Medina R A, Krawinkler H. Hysteretic models that incorporate strength and stiffness deterioration[J]. Earthquake Engineering Structural Dynamics, 2005, 34(12):1489-1511.
    [3] Lignos D, Krawinkler H. Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading[J]. Journal of Structural Engineering, 2011, 137(11):1291-1302.
    [4] Haselton C, Liel A, Lange S C, et al. Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings[J]. Berkeley:Pacific Earthquake Engineering Research Center, 2008.
    [5] Scott M, Ryan K L. Moment-rotation behavior of force-based plastic hinge elements[J]. Earthquake Spectra, 2013, 29(2):597-607.
    [6] Ribeiro F L A, Barbosa A R, Scott M, et al. Deterioration modeling of steel moment resisting frames using finite-length plastic hinge force-based beam-column elements[J]. Journal of Structural Engineering, 2015, 141(2):04014112.
    [7] Lehman, D E, Moehle, J P. Seismic performance of well-confined concrete bridge columns[R]. Berkeley:Pacific Earthquake Engineering Research Center, 2000.
    [8] Berry M, Lehman D E, Lowes L. Lumped-plasticity model for performance simulation of bridge columns[J]. Aci Structural Journal, 2008, 105(3):270-279.
    [9] Priestley M, Seible F, Calvi G M. Seismic design and retrofit of bridges[M]. New York:Wiley, 199.
    [10] 顾冬生,吴刚. 地震荷载作用下FRP加固钢筋混凝土圆柱变形能力计算方法研究[J]. 工程力学, 2013, 30(1):261-270. Gu D H, Wu G. Deformation capacity of frp retrofitted circular concrete columns under simulated seismic loading[J]. Engineering Mechanics, 2013, 30(1):261-270.(in Chinese)
    [11] 郭磊, 李建中, 范立础. 桥梁结构抗震设计中截面刚度的取值分析[J]. 同济大学学报(自然科学版), 2004, 32(11):1423-1427. Guo L, Li J Z, Fan L C. Analysis of section stiffness adopted in seismic design for bridge structures[J]. Journal of Tongji University (Natural Science), 2004, 32(11):1423-1427.(in Chinese)
    [12] 郑罡, 李贵乾. 钢筋混凝土桥墩有效刚度[J]. 土木工程学报, 2013, 46(6):44-52. Zheng G, Li G Q. Effective stiffness of reinforced concrete bridge piers[J]. China Civil Engineering Journal, 2013, 46(6):44-52.(in Chinese)
    [13] Elwood K J, Eberhard M O. Effective stiffness of reinforced concrete columns[J]. ACI Structural Journal, 2009, 106(4):476-484.
    [14] Grammatikou S, Biskinis D, Fardis M. Ultimate strain criteria for RC members in monotonic or cyclic flexure[J]. Journal of Structural Engineering, 2016, 142(9):04016046.
    [15] 张永兵, 周明军, 郑磊. 基于改进IMK恢复力模型的填充墙RC框架结构地震易损性分析[J]. 重庆大学学报, 2018, 41(3):67-75. Zhang Y B, Zhou M J, Zheng L. Seismic fragility analysis of infilled reinforced concrete frame building based on modified ibarra-medina-krawinkler model[J]. Journal of Chongqing University, 2018, 41(3):67-75.(in Chinese)
    [16] 李忠献, 李杨, 李宁. RC桥墩抗震性能分析模型与验证[J]. 地震工程与工程振动, 2014, 34(1):71-80. Li Z X, Li Y, Li N. Seismic analysis model of RC bridge piers:simulation and verification[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(1):71-80.(in Chinese)
    [17] Berry M P, Eberhard M O. Practical performance model for bar buckling[J]. Journal of Structural Engineering, 2005, 131(7):1060-1070.
    [18] Goodnight J C, Kowalsky M J, Nau J M. Strain limit states for circular RC bridge columns[J]. Earthquake Spectra, 2016, 32(3):1627-1652.
    [19] Haselton C B, Liel A B, Taylor-Lange S C, et al. Calibration of model to simulate response of reinforced concrete beam-columns to collapse[J]. ACI Structural Journal, 2016, 113(6):1141-1152.
    [20] Haselton C B, Liel A B, Deierlein G G, et al. Seismic collapse safety of reinforced concrete buildings:Ⅰ. Assessment of ductile moment frames[J]. Journal of Structural Engineering, 2011, 137(4):481-491.
    [21] Saatcioglu M, Grira M. Confinement of reinforced concrete columns with welded reinforced grids[J]. ACI Structural Journal, 1999, 96(1):29-39.
    [22] Nishida H, Unjoh S. Dynamic response characteristic of reinforced concrete column subjected to bilateral earthquake ground motions[C]//Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, Canada:2004.
    [23] 丁阳, 伍敏, 徐龙河, 等. 钢筋混凝土柱基于易损性曲线的地震损伤评估[J]. 工程力学, 2012, 29(1):81-86. Ding Y, Wu M, Xu L H, et al. Vulnerability curves-based seismic damage assessment of RC columns[J]. Engineering Mechanics, 2012, 29(1):81-86.(in Chinese)
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘赛,顾冬生.基于改进IMK滞回规则的弯矩曲率退化模型研究[J].重庆大学学报,2021,44(1):106~118

Copy
Share
Article Metrics
  • Abstract:1023
  • PDF: 1775
  • HTML: 959
  • Cited by: 0
History
  • Received:September 04,2020
  • Online: January 08,2021
Article QR Code