Design and analysis of a novel type micro-dispensing mechanism with large displacement
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [23]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To solve the issues of low accuracy and limited speed of a micro liquid-delivery system, a novel micro-dispensing mechanism with a large stroke using a piezoelectric actuator was proposed. To compensate the limited stroke of the piezoelectric actuator, hybrid amplification mechanisms were integrated with the designed flexure-based mechanism. Referring to the operation principle of three typical amplification mechanisms, the magnification ratio was derived. Based on Lagrange’s theorem, the stiffness model of the mechanism was established. In addition, the natural frequency of the mechanism was derived. To validate the correctness of the theoretical analysis, simulations were performed via the ANSYS Workbench, demonstrating that the errors of the stiffness model and magnification ratio were 8.5% and 7.2%, respectively. The proposed mechanism provides insights to the design of the high-performance liquid micro delivery system.

    Reference
    [1] Seon J A, Dahmouche R, Gauthier M. On the contribution of adhesion and friction in planning dexterous in-hand micromanipulation[J]. Journal of Micro-Bio Robotics, 2017, 12:33-44.
    [2] 李文亚,曹聪聪,杨夏炜,等. 冷喷涂复合加工制造技术及其应用[J]. 材料工程, 2019, 47(11):53-63.Li W Y, Cao C C, Yang X W, et al. Cold spraying hybrid processing technology and its application[J]. Journal of Materials Engineering, 2019, 47(11):53-63. (in Chinese)
    [3] 丁冰晓, 肖霄, 李杨民. 大行程并联三自由度柔性微操作平台的设计[J]. 天津理工大学学报, 2015, 31(4):28-32.Ding B X, Xiao X, Li Y M. Design a 3-DOF compliant parallel mechanism with large stroke[J]. Journal of Tianjin University of Technology, 2015, 31(4):28-32. (in Chinese)
    [4] 黄晨灿. 微装配系统的力学特性及精度分析研究[D]. 北京:北京理工大学, 2017.Huang C C. The mechanical characteristics and precision analysis of flexible automatic assembly system for micro devices[D]. Beijing:Beijing Institute of Technology, 2017. (in Chinese)
    [5] 姚玉峰,路士州,刘亚欣,等. 微量液体自动分配技术研究综述[J]. 机械工程学报, 2013, 49(14):140-153.Yao Y F, Lu S Z, Liu Y X, et al. Research on automated micro-liquid dispensing technology[J]. Journal of Mechanical Engineering, 2013, 49(14):140-153. (in Chinese)
    [6] Kunchala P, Kappagantula K. 3D printing high density ceramics using binder jetting with nanoparticle densifiers[J]. Materials & Design, 2018, 155:443-450.
    [7] Chen C L, Wang J P, Huang G M, et al. High-precision rapid prototyping technology for manufacturing linear guides[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9/10/11/12):3137-3142.
    [8] 陈九生,蒋稼欢. 微流控液滴技术:微液滴生成与操控[J]. 分析化学, 2012, 40(8):1293-1300.Chen J S, Jiang J H. Droplet microfluidic technique:mirodroplets formation and manipulation[J]. Chinese Journal of Analytical Chemistry, 2012, 40(8):1293-1300.(in Chinese)
    [9] 孙道恒,高俊川,杜江,等. 微电子封装点胶技术的研究进展[J]. 中国机械工程, 2011, 22(20):2513-2519.Sun D H, Gao J C, Du J, et al. Advances in fluid dispensing technology for micro-electronics packaging[J]. Chinese Journal of Construction Machinery, 2011, 22(20):2513-2519. (in Chinese)
    [10] 史亚莉,张正涛,徐德. 跨尺度微管微球三维半自动装配点胶系统[J]. 光学精密工程, 2015, 23(11):3121-3128.Shi Y L, Zhang Z T, Xu D. 3D semi-automatic assembly and dispensing system for trans-scale parts of micro-tube and micro-sphere[J]. Optics and Precision Engineering, 2015, 23(11):3121-3128. (in Chinese)
    [11] 韩萌萌. 基于压电原理的微量点胶仿真与实验研究[D]. 哈尔滨:哈尔滨工业大学,2014.Han M M. Simulation and experiment research on microdispensing based on piezoelectric drive[D]. Harbin:Harbin Institute of Technology, 2014. (in Chinese)
    [12] 陈从平,张涛,董小刚. 点胶微通道结构参数对胶体挤出过程影响规律研究[J]. 三峡大学学报(自然科学版), 2013, 35(1):73-75.Chen C P, Zhang T, Dong X G. Research on influence of micro-channel structure parameters for glue soluting dispensing process[J]. Journal of China Three Gorges University (Natural Sciences), 2013, 35(1):73-75. (in Chinese)
    [13] 胡俊峰, 梁龙, 赵永祥. 基于柔顺机构的压电式微喷点胶系统设计与性能分析[J]. 光学精密工程, 2019, 27(9):1990-2001.Hu J F, Liang L, Zhao Y X. Design and performance analysis of piezoelectric micro-spray dispensing system based on compliant mechanism[J]. Optics and Precision Engineering, 2019, 27(9):1990-2001.(in Chinese)
    [14] Nguon B, Jouaneh M. Design and characterization of a precision fluid dispensing valve[J]. The International Journal of Advanced Manufacturing Technology, 2004, 24(3/4):251-260.
    [15] Deng G L, Cui W J, Zhou C, et al. A piezoelectric jetting dispenser with a pin joint[J]. Optik, 2018, 175:163-171.
    [16] Lu S Z, Liu Y X, Yao Y F, et al. Bond-graph model of a piezostack driven jetting dispenser[J]. Simulation Modelling Practice and Theory, 2014, 49:193-202.
    [17] Yao Y F, Lu S Z, Liu Y X. Simulation and experiment research of non-contact micro-liquid reagent dispensing[J]. Advance Journal of Food Science and Technology, 2013, 5(5):514-521.
    [18] Qin Y D, Zhao X, Shirinzadeh B, et al. Closed-form modeling and analysis of an XY flexure-based nano-manipulator[J/OL]. Chinese Journal of Mechanical Engineering, 2018, 31:7[2020-02-25]. https://doi.org/10.1186/s10033-018-0211-z.
    [19] Zhu B L, Zhang X M, Zhang H C, et al. Design of compliant mechanisms using continuum topology optimization:a review[J]. Mechanism and Machine Theory, 2020, 143:103622.
    [20] 刘凯,曹毅,周睿,等. 抗压内LET柔性铰链的建模及分析[J]. 工程设计学报, 2016, 23(6):585-591.Liu K, Cao Y, Zhou R, et al. Modeling and analysis of compressive inside LET flexure hinge[J]. Chinese Journal of Engineering Design, 2016, 23(6):585-591. (in Chinese)
    [21] Ding B X, Li Y M, Xiao X, et al. Design and analysis of a 3-DOF planar micromanipulation stage with large rotational displacement for micromanipulation system[J]. Mechanical Sciences, 2017, 8(1):117-126.
    [22] Li J Y, Yan P, Li J M. Displacement amplification ratio modeling of bridge-type nano-positioners with input displacement loss[J]. Mechanical Sciences, 2019, 10(1):299-307.
    [23] Wu Z G, Li Y M, Hu M. Design and optimization of full decoupled micro/nano-positioning stage based on mathematical calculation[J]. Mechanical Sciences, 2018, 9(1) : 417-429.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李玄,丁冰晓,周双武,李杨民.大行程微点胶机构的设计与分析[J].重庆大学学报,2021,44(4):37~51

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 27,2020
  • Online: April 20,2021
Article QR Code