Impact load suppression and dynamic parameter optimization of a gear transmission system
CSTR:
Author:
Clc Number:

TH113.1

  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    The reliability and service life of the heavy-duty and high-speed gear transmission system are severely affected by the large impact load of the system. The objective of this study is to reduce the impact load of the cutting transmission system by optimizing the motion parameters during the operation of the shearer. Taking a coal mining machine gear transmission system as an example, an electromechanical coupling model of the power transmission system of the shearer including the dynamic model of the motor and the dynamic model of the coupled gear train and the planetary gear train was established. The simulation results show that under sudden load changes, the dynamic optimization of the motion parameters reduces the impact load in the cutting transmission system. An experimental bench for the cutting power transmission system was set up to study the effects of motion parameter optimization on the impact load of the cutting transmission system. The trend of the impact load of the transmission system and the speed adjustment duration obtained from experiments and simulations are in good agreement, verifying the effectiveness of the motion parameter optimization.

    Reference
    [1] 耿智博, 肖科, 王家序, 等. 汽车变速器齿轮传动系统动态特性研究及优化[J]. 湖南大学学报(自然科学版), 2018,45(8):22-31. Geng Z B, Xiao K, Wang J X, et al. Analysis and optimization design on dynamic characteristic of gear transmission system of automobile transmission[J]. Journal of Hunan University (Natural Sciences), 2018,45(8):22-31. (in Chinese)
    [2] 孙伟, 李想, 魏静, 等. 大功率风电增速器的多目标优化设计[J]. 重庆大学学报, 2015,38(1):110-119,147. Sun W, Li X, Wei J, et al. Multi-objective dynamic optimization design of high-power wind turbine gearbox[J]. Journal of Chongqing University, 2015,38(1):110-119,147. (in Chinese)
    [3] Tamboli K, Patel S, George P M, et al. Optimal design of a heavy duty helical gear pair using particle swarm optimization technique[J]. Procedia Technology, 2014, 14:513-519.
    [4] Chandrasekaran G, Sreebalaji V S, Saravanan R, et al. Multiobjective optimisation of bevel gear pair design using NSGA-Ⅱ[J]. Materials Today:Proceedings, 2019, 16:351-360.
    [5] Świtoński E, Mężyk A. Selection of optimum dynamic features for mechatronic drive systems[J]. Automation in Construction, 2008, 17(3):251-256.
    [6] 周笛, 张旭方, 张义民. 采煤机牵引部可靠性灵敏度分析及优化设计[J]. 东北大学学报(自然科学版), 2017,38(1):81-85. Zhou D, Zhang X F, Zhang Y M. Reliability sensitivity analysis and optimization design on tractive drive system of shearer loader[J]. Journal of Northeastern University (Natural Science), 2017,38(1):81-85. (in Chinese)
    [7] Korta J A, Mundo D. Multi-objective micro-geometry optimization of gear tooth supported by response surface methodology[J]. Mechanism and Machine Theory, 2017, 109:278-295.
    [8] Artoni A, Gabiccini M, Guiggiani M, et al. Multi-objective ease-off optimization of hypoid gears for their efficiency, noise, and durability performances[J]. Journal of Mechanical Design, 2011, 133(12):121007.
    [9] 林何, 王三民. 参数对分扭-并车齿轮传动系统动载和均载特性的影响[J]. 机械传动, 2019,43(5):18-22,63. Lin H, Wang S M. Influence of parameter on dynamic load and load sharing characteristic of split torque-combine power gear transmission system[J]. Journal of Mechanical Transmission, 2019,43(5):18-22,63. (in Chinese)
    [10] 欧阳天成, 黄豪中, 王攀, 等. 胶印机齿轮传动系统动力学建模及优化设计[J]. 东南大学学报(自然科学版), 2016,46(6):1172-1178. Ouyang T C, Huang H Z, Wang P, et al. Dynamics modeling and dynamic optimization design for offset press gear transmission system[J]. Journal of Southeast University (Natural Science Edition), 2016,46(6):1172-1178. (in Chinese)
    [11] 李启山. 基于模糊可靠理论的采煤机牵引机构传动可靠性分析[J]. 机械管理开发, 2019,34(8):104-105. Li Q S. Transmission reliability analysis of shearer traction mechanism based on fuzzy reliability theory[J]. Mechanical Management and Development, 2019,34(8):104-105. (in Chinese)
    [12] 常玉洁. 综合考虑参数时变的异步电机模型研究[D]. 北京:北京交通大学, 2019. Chang Y J. Research on asynchronous motor model considering synthetically time-varying parameters[D]. Beijing:Beijing Jiaotong University, 2019. (in Chinese)
    [13] Salo M, Tuusa H. A vector controlled current-source PWM rectifier with a novel current damping method[J]. IEEE Transactions on Power Electronics, 2000, 15(3):464-470.
    [14] 杨文奇. 采煤机牵引部双电机驱动协调控制研究[D]. 重庆:重庆大学, 2016. Yang W Q. Research on coordinated control of dual-motor driving system of shearer's haulage unit[D]. Chongqing:Chongqing University, 2016. (in Chinese)
    [15] 高红斌, 杨兆建. 滚筒采煤机负载的波动性分析[J]. 机械科学与技术, 2013,32(7):1054-1059. Gao H B, Yang Z J. Analysis on the load fluctuation of roller shearer[J]. Mechanical Science and Technology for Aerospace Engineering, 2013,32(7):1054-1059. (in Chinese)
    [16] 张启志. 采煤机截割振动信号采集系统的研究[D]. 北京:煤炭科学研究总院, 2017. Zhang Q Z. Research on cutting vibration signal acquisition system of shearer[D]. Beijing:China Coal Research Institute, 2017. (in Chinese)
    Related
    Cited by
Get Citation

杨阳,赵悦岑,李明.齿轮传动系统冲击载荷抑制与动态参数优化[J].重庆大学学报,2021,44(6):84~95

Copy
Related Videos

Share
Article Metrics
  • Abstract:363
  • PDF: 988
  • HTML: 1291
  • Cited by: 0
History
  • Received:December 19,2019
  • Online: June 10,2021
Article QR Code