Design and implementation of embedded real-time face detection system based on VPU acceleration
CSTR:
Author:
Clc Number:

TP391.4

  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The high design cost and huge computing resource demand of intelligent devices have become the main obstacles to the implementation and application of deep learning algorithm in portable and low-power devices. In order to solve these problems, in this paper, based on the raspberry PI platform and with the help of Intel video processing unit(VPU) low-power acceleration module, a real-time face detection system based on CNN model with residual feature extraction module was designed and implemented. The experimental results show that compared with using central processing unit(CPU) of raspberry PI alone, the proposed method achieved 18.62 times and 17.46 times acceleration respectively in the experiments of face detection and face alignment detection in video stream. It realized the fast, real-time and online face detection and face alignment extraction in portable devices. Meanwhile, it also provided a feasible scheme for the operation of deep learning algorithm in portable and low power devices.

    Reference
    [1] Le Cun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
    [2] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
    [3] Yan Z C, Zhang H, Piramuthu R, et al. HD-CNN:hierarchical deep convolutional neural networks for large scale visual recognition[C]//2015 IEEE International Conference on Computer Vision(ICCV). December 7-13, 2015, Santiago, Chile. IEEE, 2015:2740-2748.
    [4] Gidaris S, Komodakis N. Object detection via a multi-region and semantic segmentation-aware CNN model[C]//2015 IEEE International Conference on Computer Vision(ICCV). December 7-13, 2015, Santiago, Chile. IEEE, 2015:1134-1142.
    [5] Bappy J H, Roy-Chowdhury A K. CNN based region proposals for efficient object detection[C]//2016 IEEE International Conference on Image Processing(ICIP). September 25-28, 2016, Phoenix, AZ, USA. IEEE, 2016:3658-3662.
    [6] Lin Y F, Li J B, Wang H J. DCNN-GAN:reconstructing realistic image from fMRI[C]//201916th International Conference on Machine Vision Applications(MVA). May 27-31, 2019. Tokyo, Japan. IEEE, 2019.
    [7] 张圣祥, 郑力新, 朱建清, 等. 采用深度学习的快速超分辨率图像重建方法[J]. 华侨大学学报(自然科学版), 2019, 40(2):245-250. Zhang S X, Zheng L X, Zhu J Q, et al. Fast super-resolution image reconstruction method using deep learning[J]. Journal of Huaqiao University(Natural Science), 2019, 40(2):245-250.(in Chinese)
    [8] 许晓. 基于深度学习的活体人脸检测算法研究[D]. 北京:北京工业大学, 2016. Xu X. Research on deep learning based face lineness detection algorithm[D]. Beijing:Beijing University of Technology, 2016.(in Chinese)
    [9] 王科俊, 赵彦东, 邢向磊. 深度学习在无人驾驶汽车领域应用的研究进展[J]. 智能系统学报, 2018, 13(1):55-69. Wang K J, Zhao Y D, Xing X L. Deep learning in driverless vehicles[J]. CAAI Transactions on Intelligent Systems, 2018, 13(1):55-69.(in Chinese)
    [10] 朱柳依. 结合模板匹配与单样本深度学习的货架商品定位与识别技术研究[D]. 杭州:浙江大学, 2018. Zhu L Y. Research on grocery product detection and recognition technology by template matching and one-shot deep learning[D]. Hangzhou:Zhejiang University, 2018.(in Chinese)
    [11] 张印, 董兰芳, 王建富. 基于GPU的人脸检测和特征点定位研究[J]. 电子技术, 2014, 43(9):38-42,37. Zhang Y, Dong L F, Wang J F. Face detection and feature localization based on GPU[J]. Electronic Technology, 2014, 43(9):38-42,37.(in Chinese)
    [12] Ren S Q, He K M, Girshick R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
    [13] Redmon J, Divvala S, Girshick R, et al. You only look once:unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:779-788.
    [14] Redmon J, Farhadi A. YOLO9000:better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017:6517-6525.
    [15] Redmon J, Farhadi A. Yolov3:An incremental improvement[EB/OL]. arXive-prints, (2018-04-08)[2020-03-10]. https://arxiv.org/abs/1804.02767.
    [16] Liu W, Anguelov D, Erhan D, et al. SSD:single shot MultiBox detector[M]//Computer Vision-ECCV 2016. Cham:Springer International Publishing, 2016:21-37.
    [17] Tan M, Le Q V. EfficientNet:rethinking model scaling for convolutional neural networks[J]. International Conference on Machine Learning, 2019.
    [18] Sun Y, Wang X G, Tang X O. Deep convolutional network cascade for facial point detection[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. June 23-28, 2013, Portland, OR, USA. IEEE, 2013:3476-3483.
    [19] Zhou E J, Fan H Q, Cao Z M, et al. Extensive facial landmark localization with coarse-to-fine convolutional network cascade[C]//2013 IEEE International Conference on Computer Vision Workshops. December 2-8, 2013, Sydney, NSW, Australia. IEEE, 2013:386-391.
    [20] Zhang K P, Zhang Z P, Li Z F, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10):1499-1503.
    [21] Feng Z H, Kittler J, Awais M, et al. Wing loss for robust facial landmark localisation with convolutional neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018:2235-2245.
    [22] 李文胜. 基于树莓派的嵌入式Linux开发教学探索[J]. 电子技术与软件工程, 2014(9):219-220. Li W S. Research on embedded Linux development teaching based on raspberry PI[J]. Electronic Technology and Software Engineering, 2014(9):219-220.(in Chinese)
    [23] 罗佳伟, 孙建梅, 徐国旭. 基于树莓派和深度学习技术的智能遥控车的设计与实现[J]. 计算机产品与流通,2018(1):185-185. Luo J W, Sun J M, Xu G X. Design and Implementation of intelligent remote control vehicle based on raspberry PI and deep learning technology[J]. Computer Products and Circulation, 2018(1):185-185.(in Chinese)
    [24] 宋凯, 姚嘉明, 李静. 基于树莓派的智能家居控制开关的研究[J]. 电子技术与软件工程, 2015(21):140-141. Song K, Yao J M, Li J. Research on smart home control switch based on raspberry PI[J]. Electronic Technology and Software Engineering, 2015(21):140-141.(in Chinese)
    [25] 刘华, 田占生, 冯宇飞. 基于树莓派的智能家居语音控制系统[J]. 制造业自动化, 2018, 40(10):128-131. Liu H, Tian Z S, Feng Y F. Intelligent home voice control system based on raspberry Pi[J]. Manufacturing Automation, 2018, 40(10):128-131.(in Chinese)
    [26] 黄宏敏, 张明森, 詹瑞典. 基于FPGA的YOLO网络的分片加速方法[J]. 电子世界, 2020(8):66-67. Huang H M, Zhang M S, Zhan R D. Sharding acceleration method based on FPGA YOLO Network[J]. Electronics World, 2020(8):66-67.(in Chinese)
    [27] 刘勤让, 刘崇阳. 利用参数稀疏性的卷积神经网络计算优化及其FPGA加速器设计[J]. 电子与信息学报, 2018, 40(6):102-108. Liu Q R, Liu C Y. Calculation optimization for convolutional neural networks and FPGA-based accelerator design using the parameters sparsity[J]. Journal of Electronics and Information Technology, 2018, 40(6):102-108.(in Chinese)
    [28] 张榜, 来金梅. 一种基于FPGA的卷积神经网络加速器的设计与实现[J]. 复旦学报(自然科学版), 2018, 57(2):236-242. Zhang B, Lai J M. Design and implementation of a FPGA-based accelerator for convolutional neural networks[J]. Journal of Fudan University(Natural Science), 2018, 57(2):236-242.(in Chinese)
    [29] Xu J. 斯坦福目标检测深度学习指南[J]. 机器人产业, 2017(6):20-26. Xu J. Stanford's guide to deep learning for target detection[J]. Robotics Industry, 2017(06):20-26.(in Chinese)
    [30] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:770-778.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

闫嘉,张跃麟,邓昌健.基于VPU加速的嵌入式实时人脸检测系统设计与实现[J].重庆大学学报,2021,44(7):115~128

Copy
Share
Article Metrics
  • Abstract:476
  • PDF: 877
  • HTML: 830
  • Cited by: 0
History
  • Received:November 04,2020
  • Online: July 28,2021
Article QR Code