Fractal characteristics and energy transfer mechanism of coal-rock combined body fragments under different loading rates
CSTR:
Author:
Clc Number:

TD315

  • Article
  • | |
  • Metrics
  • |
  • Reference [29]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to study the distribution, fractal characteristics and instability failure mechanism of coal-rock assemblages under different loading rates, uniaxial compression tests of fine sandstone-coal (FC), coarse sandstone-coal (GC) and fine sandstone-coal-coarse sandstone (FCG) were carried out under 0.001 mm/s, 0.005 mm/s, 0.01 mm/s, 0.05 mm/s and 0.1 mm/s loading rates. The results show that:1) at the 0.001 mm/s rate, the particle size of the broken coal is small, which is a complete and full failure, and the failure type belongs to plastic failure. Under 0.1 mm/s loading rate, the size of the failure fragment is the largest and the shape is irregular, which is an incomplete and inadequate failure, and the failure type belongs to brittle failure. The influence of loading rate on the failure of specimens is mainly shown in the degree of fracture development, the particle size of failure blocks, the number of failure blocks, the rate of energy release, the form of failure and the mechanism of instability. 2) The sample fragments have obvious classification characteristics. With the increase of loading rate, the number of fragments from 4.75 mm to less than 10 mm and 10 mm to less than 20 mm decreases gradually, and the fragmentation degree of specimens decreases, and the length to thickness ratio of three kinds of specimens increase at first and then decrease with the decrease of fragment size. For the fragments with the same particle size, the length to thickness ratio increases with the increase of loading rate. Increasing the loading rate will promote the number of thin-shaped fragments. 3) At the five loading rates, the particle size-quantity fractal dimensions of FC, GC and FCG composites are from 1.53 to 0.55, 1.27 to 0.26, and 1.45 to 0.46, respectively. The granularity-quantity fractal dimension decreases with the increase of loading rate, and the higher the loading rate is, the smaller the fractal dimension is. The particle size-mass fractal dimensions of FC, GC and FCG composites are from 2.35 to 1.48, 2.36 to 1.34, and 2.34 to 1.58, respectively, and the particle size-mass fractal dimensions decrease with the increase of loading rate. 4) According to the failure form of coal-rock assembly, the energy transfer mechanism of the failure process is analyzed. With the continuous loading of the assembly, the coal component is the first to be destroyed, and the released energy is directly transferred to the rock component. If it reaches the energy storage limit of the rock component, it will lead to the failure of the rock component. The energy transfer mechanism in the failure process of coal-rock assemblage reveals the lag phenomenon of rock component failure.

    Reference
    [1] Kim B H, Walton G, Larson M K, et al. Experimental study on the confinement-dependent characteristics of a Utah coal considering the anisotropy by cleats[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 105:182-191.
    [2] Eremenko A A, Mashukov I V, Eremenko V A. Geodynamic and seismic events under rockburst-hazardous block caving in gornaya shoria[J]. Journal of Mining Science, 2017, 53(1):65-70.
    [3] Konicek P, Ptacek J, Waclawik P, et al. Long-term Czech experiences with rockbursts with applicability to today's underground coal mines[J]. Rock Mechanics and Rock Engineering, 2019, 52(5):1447-1458.
    [4] Louchnikov V N, Eremenko V A, Sandy M P, et al. Support design for mines exposed to rockburst hazard[J]. Journal of Mining Science, 2017, 53(3):504-512.
    [5] Mohtarami E, Jafari A, Amini M. Stability analysis of slopes against combined circular-toppling failure[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67:43-56.
    [6] 陈光波. 煤岩组合体动力破坏规律实验研究[D]. 哈尔滨:黑龙江科技大学, 2016. Chen G B. A combination of coal and rock in the experimental research on dynamic damage[D]. Harbin:Heilongjiang University of Science and Technology, 2016. (in Chinese)
    [7] 谢和平. 大理岩微观断裂的分形(fractal)模型研究[J]. 科学通报, 1989, (5):365-368. XIE Heping. Study on fractal model of marble micro-fracture[J]. Chinese Science Bulletin, 1989, (5):365-368. (in Chinese)
    [8] Zhang K, Chen Y L, Fan W C, et al. Influence of intermittent artificial crack density on shear fracturing and fractal behavior of rock bridges:experimental and numerical studies[J]. Rock Mechanics and Rock Engineering, 2020, 53(2):553-568.
    [9] Ju Y, Sudak L, Xie H P. Study on stress wave propagation in fractured rocks with fractal joint surfaces[J]. International Journal of Solids and Structures, 2007, 44(13):4256-4271.
    [10] 何满潮, 王炀, 苏劲松, 等. 动静组合荷载下砂岩冲击岩爆碎屑分形特征[J]. 中国矿业大学学报, 2018, 47(4):699-705. He M C, Wang Y, Su J S, et al. Analysis of fractal characteristics of fragment of sandstone impact rock burst under static and dynamic coupled loads[J]. Journal of China University of Mining & Technology, 2018, 47(4):699-705.(in Chinese)
    [11] 何满潮, 杨国兴, 苗金丽, 等. 岩爆实验碎屑分类及其研究方法[J]. 岩石力学与工程学报, 2009, 28(8):1521-1529. He M C, Yang G X, Miao J L, et al. Classification and research methods of rockburst experimental fragments[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8):1521-1529.(in Chinese)
    [12] 赵菲, 何满潮, 李德建, 等. 真三轴卸载煤爆实验破坏特征演化分析[J]. 地下空间与工程学报, 2019, 15(1):142-150. Zhao F, He M C, Li D J, et al. Damage evolution in the fracture process of coal burst during true traxial unloading test[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(1):142-150.(in Chinese)
    [13] 高保彬, 李回贵, 李化敏. 不同破坏类型岩石的声发射及分形特征研究[J]. 地下空间与工程学报, 2015, 11(2):358-363. Gao B B, Li H G, Li H M. Study on acoustic emission and fractal characteristics of different damage types of rock[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(2):358-363.(in Chinese)
    [14] 郭海峰, 宋大钊, 何学秋, 等. 冲击倾向性煤不同损伤程度声发射分形特征研究[J/OL]. 煤炭科学技术:1-9[2021-01-12]. http://kns.cnki.net/kcms/detail/11.2402.TD.20200701.1731.006.html. Guo H F, Song D Z, He X Q, et al. Fractal characteristics of acoustic emission in different damage degrees of impact coal[J/OL]. Coal Science and Technology:1-9[2021-01-12]. http://kns.cnki.net/kcms/detail/11.2402.TD.20200701.1731.006.html. (in Chinese)
    [15] 夏元友, 吝曼卿, 廖璐璐, 等. 大尺寸试件岩爆试验碎屑分形特征分析[J]. 岩石力学与工程学报, 2014, 33(7):1358-1365. Xia Y Y, Lin M Q, Liao L L, et al. Fractal characteristic analysis of fragments from rockburst tests of large-diameter specimens[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7):1358-1365.(in Chinese)
    [16] 许金余, 刘石. 大理岩冲击加载试验碎块的分形特征分析[J]. 岩土力学, 2012, 33(11):3225-3229. Xu J Y, Liu S. Research on fractal characteristics of marble fragments subjected to impact loading[J]. Rock and Soil Mechanics, 2012, 33(11):3225-3229.(in Chinese)
    [17] 周盛涛, 方文, 蒋楠, 等. 冻融循环作用下砂岩单轴压缩破坏断口特征分形研究[J]. 地质科技通报, 2020, 39(5):61-68. Zhou S T, Fang W, Jiang N, et al. Fractal geometry study on uniaxial compression fracture characteristics of sandstone subjected to freeze-thaw cycles[J]. Bulletin of Geological Science and Technology, 2020, 39(5):61-68.(in Chinese)
    [18] 李守巨, 李德, 武力, 等. 非均质岩石单轴压缩试验破坏过程细观模拟及分形特性[J]. 煤炭学报, 2014, 39(5):849-854. Li S J, Li D, Wu L, et al. Meso-simulation and fractal characteristics for uniaxial compression test of inhomogeneous rock[J]. Journal of China Coal Society, 2014, 39(5):849-854.(in Chinese)
    [19] 周翠英, 梁宁, 刘镇. 红层软岩压缩破坏的分形特征与级联失效过程[J]. 岩土力学, 2019, 40(S1):21-31. Zhou C Y, Liang N, Liu Z. Fractal characteristics of compression failure of red soft rock and cascading failure process[J]. Rock and Soil Mechanics, 2019, 40(S1):21-31.(in Chinese)
    [20] 刘享华, 张科, 吴文远. 裂隙砂岩破坏过程中的能量耗散与破碎分形特征研究[J/OL].重庆大学学报:1-11[2021-01-12].http://kns.cnki.net/kcms/detail/50.1044.N.20200617.1159.002.html. LIU Xianghua, ZHANG Ke, WU Wenyuan. Investigation on correlation between energy dissipation and fractal characteristics of fragments of preflawed sandstone[J/OL]. Journal of Chongqing University:1-11[2021-05-12].http://kns.cnki.net/kcms/detail/50.1044.N.20200617.1159.002.html. (in Chinese)
    [21] 丁鑫, 肖晓春, 吕祥锋, 等. 煤体破裂分形特征与声发射规律研究[J]. 煤炭学报, 2018, 43(11):3080-3087. Ding X, Xiao X Ciaochun, Lü X F, et al. Investigate on the fractal characteristics and acoustic emission of coal fracture[J]. Journal of China Coal Society, 2018, 43(11):3080-3087.(in Chinese)
    [22] 李杨杨, 张士川, 文志杰, 等. 循环载荷下煤样能量转化与碎块分布特征[J]. 煤炭学报, 2019, 44(5):1411-1420. Li Y Y, Zhang S C, Wen Z J, et al. Energy conversion and fragment distribution characteristics of coal sample under uniaxial cyclic loading[J]. Journal of China Coal Society, 2019, 44(5):1411-1420.(in Chinese)
    [23] Liu Z X, Han K W, Yang S, et al. Fractal evolution mechanism of rock fracture in undersea metal mining[J]. Journal of Central South University, 2020, 27(4):1320-1333.
    [24] Li C J, Xu Y, Chen P Y, et al. Dynamic mechanical properties and fragment fractal characteristics of fractured coal-rock-like combined bodies in split Hopkinson pressure bar tests[J]. Natural Resources Research, 2020, 29(5):3179-3195.
    [25] 李德建, 贾雪娜, 苗金丽, 等. 花岗岩岩爆试验碎屑分形特征分析[J]. 岩石力学与工程学报, 2010, 29(S1):3280-3289. Li D J, Jia X N, Miao J L, et al. Analysis of fractal characteristics of fragment from rockburst test of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1):3280-3289.(in Chinese)
    [26] 杨磊, 高富强, 王晓卿, 等. 煤岩组合体的能量演化规律与破坏机制[J]. 煤炭学报, 2019, 44(12):3894-3902. Yang L, Gao F Q, Wang X Q, et al. Energy evolution law and failure mechanism of coal-rock combined sspecimen[J]. Journal of China Coal Society, 2019, 44(12):3894-3902.(in Chinese)
    [27] 陈光波, 秦忠诚, 张国华, 等. 受载煤岩组合体破坏前能量分布规律[J]. 岩土力学, 2020, 41(6):2021-2033. Chen G B, Qin Z C, Zhang G H, et al. Law of energy distribution before failure of a loaded coal-rock combined body[J]. Rock and Soil Mechanics, 2020, 41(6):2021-2033.(in Chinese)
    [28] 尹大伟, 陈绍杰, 邢文彬, 等. 不同加载速率下顶板-煤柱结构体力学行为试验研究[J]. 煤炭学报, 2018, 43(5):1249-1257. Yin D W, Chen S J, Xing W B, et al. Experimental study on mechanical behavior of roof-coal pillar structure body under different loading rates[J]. Journal of China Coal Society, 2018, 43(5):1249-1257.(in Chinese)
    [29] Gao F Q, Kang H P, Yang L. Experimental and numerical investigations on the failure processes and mechanisms of composite coal-rock specimens[J]. Scientific Reports, 2020, 10(1):1-13.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

陈光波,滕鹏程,张国华,杨磊,李谭,吕鹏飞.不同加载速率下煤岩组合体碎块分形特征与能量传递机制[J].重庆大学学报,2022,45(8):115~129

Copy
Share
Article Metrics
  • Abstract:375
  • PDF: 617
  • HTML: 653
  • Cited by: 0
History
  • Received:January 18,2020
  • Online: August 19,2022
Article QR Code