Effect of alternating electric field frequency on deformation and coalescence of weakly conducting droplets
CSTR:
Author:
Clc Number:

O35

  • Article
  • | |
  • Metrics
  • |
  • Reference [42]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Based on the phase field method (PFM) and charge conservation equation, a numerical method is proposed for two-phase flows in an external electric field within the OpenFOAM framework. Under weakly conducting condition, the deformation of a single droplet and the coalescence of two droplets under alternating electric field are investigated. The results show that the frequency of the alternating electric field can effectively affect both the deformation rate of the single droplet and the coalescence efficiency of the two droplets. When the permittivity ratio Q equals to the electrical conductivity ratio R, the mean deformation resulting from the alternating electric field (AC field) is the same as the steady state deformation under the equivalent direct current electric field (DC field), and the coalescence time becomes longer with the increase of the AC field frequency. When QR, the mean deformation rate of the single droplet increases continuously and the coalescence time of two droplets reduces with the increase of the frequency of the AC field. When QR, the increase of AC field frequency leads to the decrease of the average deformation rate of single droplet and the increase of the fusion time of two droplets.

    Reference
    [1] Simpson G C. On the electricity of rain and its origin in thunderstorms[J]. Philosophical Transactions of the Royal Society of London, 1909,209:379-413.
    [2] Ptasinski K J, Kerkhof P J A M. Electric field driven separations:phenomena and applications[J]. Separation Science and Technology, 1992,27(8/9):995-1021.
    [3] Theberge A,Courtois F, Schaerli Y, et al. Microdroplets in microfluidics:an evolving platform for discoveries in chemistry and biology[J]. Angewandte Chemie International Edition, 2010, 49(34):5846-5868.
    [4] Torza S,Cox R G,Mason S G. Electrohydrodynamie deformation and bursts of liquid drops[J]. Philosophical Transactions of the Royal Society of London. Series A,Mathematical and Physical Sciences, 1971, 269(1198):295-319.
    [5] Vizika O, Saville D A. The electrohydrodynamic deformation of drops suspended in liquids in steady and oscillatory electric fields[J]. Journal of Fluid Mechanics, 1992, 239:1-21.
    [6] Esmaeli A, Halim M A. Electrohydrodynamics of a liquid jet in transverse AC electric fields[J]. International Journal of Multiphase Flow, 2018, 109:219-241.
    [7] TaylorG I, Mcewan A D, De Jong L N J. Studies in electrohydrodynamics. I The circulation produced in a drop by an electric field[J]. Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences, 1966,291(1425):159-166.
    [8] Allan R S, Mason S G. Particle behaviour in shear and electric fields I. Deformation and burst of fluid drops[J]. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1962, 267(1328):45-61.
    [9] Esmaeeli A, Halim M A. Electrohydrodynamics of a liquid drop in AC electric fields[J]. Acta Mechanica, 2018, 229(9):3943-3962.
    [10] L6pez-Herrera J M,Popinet s, Herrada M A. A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid[J]. Journal of Computational Physics, 2011, 230(5):1939-1955.
    [11] Sahu K C, Tripathi M K, Chaudhari J,et al. Simulations of a weakly conducting droplet under the influence of an alternating electric field[J]. Electrophoresis, 2020, 41(23):1953-1960.
    [12] Bailes P J. An electrical model for coalescers that employ pulsed DC fields[J]. Chemical Engineering Research and Design, 1995,73(5):559-566.
    [13] 孙治谦,金有海,王磊,等.高频脉冲电场参数对水滴极化变形的影响[J].化工学报,2012, 63(10):3112-3118. Sun ZQ, Jin Y H, Wang L, et al. Impact of high-frequency pulse electric field parameters on polarization and deformation of water droplet[J]. CIESC Journal, 2012, 63(10):3112-3118. (in Chinese)
    [14] 陈庆国,梁雯,宋春辉.电场强度对原油乳化液破乳脱水的影响[J].高电压技术,2014,40(1):173-180. Chen QG, Liang W, Song C H. Effect of eletric field strength on crude oil emulsion's demulsification and dehydration[J]. High Volage Engineering, 2014. 40(1):173-180. (in Chinese)
    [15] Goto M, Irie J. Kondo K, et al. Electrical demulsification of W/0 emulsion by continuous tubular coalescer[J]. Journal of Chemical Engineering of Japan, 1989. 22(4):401-406.
    [16] Wllims T J, Bailey A G. Changes in the size distibution of a waterir-oil emulsion due to eletrie field induced coalescence[J]. IEEE Transactions on Industry Applications, 1986. IA-2203):536-541.
    [17] Eow J s, Ghadiri M. Drop-drop calesence in an eletrie field:the efetse of applied etrie field and eletrode geometry[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspeets, 2003, 219(1/2/3):253-279.
    [18] Chen T Y, Mohammed R A. Bailey A I, et al. Dewatering of crude oil emulsions 4. Emulsion resolution by the aplication of an eletrie field[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 1994. 83(3):273-284.
    [19] 陈晓东,胡国庆.双液滴在交流电场下的变形和相互作用[C]//北京力学会第21届学术年会暨北京振动工程学会第22届学术年会论文集.北京:北京力学会,2015:74-77. ChenX D, Hu G Q. Deformation and interaction of double droplets under AC eletrie field[C]//Proeedings of the 21st Annual Meeting of the Being Society of Mechanics and the 22nd Annual Meeting of the Beijing Society of Vibration Engineering. Bejing:Beijing Society of Theoretical and Applied Mechanics. 2015:74-77. (in Chinese)
    [20] Unverdi S O, Trygvason G. A front-tracking method for viscous, incompressible, muli-fluid flows[J]. Journal of Computational Physics. 1992. 10001):25-37.
    [21] HirtC W. Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physies. 1981. 39(1):201-225.
    [22] Osher S, Sethian J A Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988. 79(1):12-49.
    [23] Jacqmin D. Calculation of two-phase navier-stokes flows using phase field modeling[J]. Journal of Computational Physies. 1999,155(1):96-127.
    [24] Fernandez A. Reponse of an emulsion of leaky dieletrie drops inmersed in a simple shear flow:Drops less conductive than the suspending fluid[J]. Physics of Fluids. 2008, 20(4):043304.
    [25] Fernandex A. Tryggvason G, CheJ, et al. The efets of electrostatic forces on the distribution of drops in a channel flow:Twordimensional oblate drops[J]. Physies of Fluids, 2005, 17(9):093302.
    [26] HuaJ, Lim L K, Wang C H. Numerical simulation of deformation/motion of a drop suspended in viscous liquids under influence of steady ectrire fields[J]. Physics of Fluids, 2008, 20(11):113302.
    [27] Mahlmann s. Papageorgiou D T. Numerical study of eletrie field efet on the deformation of twordimensional liquid drops in simple shear flow at arbitrary Reynolds number[J]. Journal of Fluid Mechanices. 2009,626:367-393.
    [28] Tomar G, Gerlach D. Biswas G, et al. Tworphase eletrobhydrodynamic simulations using a volume-of-luid approach[J]. Journal of Computational Physics, 2007. 227(2):1267-1285.
    [29] Lin Y, Skjetne P, Carlson A. A phase field model for multiphase letro-hydrodynamie flow[J]. International Journal of Multiphase Flow. 2012. 45:1-11.
    [30] 李家宇.粘弹性液滴的撞击动力学过程数值研究[D].重庆:重庆大学,2019. LiJ Y. Numerical study on impact dynamie process of viscoelastie droplet[D]. Chongqing:Chongqing University, 2019. (in Chinese)
    [31] Teng C H, Chern I L. Lai M C. Simulating binary fluid-surfactant dynamies by a phase field model[J]. Discrete & Continwous Dynamical Systems:B. 2012. 17(4):1289-1307.
    [32] 李家宇,曾忠,乔龙.相场方法模拟液滴的动态润湿行为]应用数学和力学.2019, 40(9):957-967. LiJ Y, Zeng Z. Qino L. Numerical simulation of droplets' dynamic wetting process with the phase field method[J]. Applied Mathematics and Mechanics. 2019. 40(9):957-967.(in Chinese)
    [33] 周平,曾忠,乔龙.假塑性流体液滴撞击壁面上的铺展的格子Boltzmann模拟[J].重庆大学学报.2018,41(12):1-9. Zhou P, Zeng Z, Qiao L. Simulation of shear-thinning droplets impact on solid surfaces by using Lattice Boltzmann methodC]. Journal of Chongqing University, 2018. 41(12):1-9. (in Chinese)
    [34] Borcia R. Bestehorn M. Phasefield model for Marangoni convetion in liquid-gas systems with a deformable interfae[J]. Physical Review E. 2003. 67(6):066307.
    [35] CahnJ W, Hilliard J E. Free energy of a nonuniform system. I. interfacial free energy and free energy[J] The Journal of Chemical Physics, 1958,28(2):258-267.
    [36] Jacqmin D. An energy approach to the continuum surface tension method[C]//34th Aerospace Sciences Meeting and Exhibit, January 15-18,1996,Reno, NV. Reston, Virginia:AIAA, 1996.
    [37] Kim J. A continuous surface tension force formulation for diffuse-interface models[J]. Journal of Computational Physics, 2005,204(2):784-804.
    [38] Liu H H, Valocchi A J, Zhang Y H, et al. Lattice Boltzmann phase-field modeling of thermocapillary flows in a confined microchannel[J]. Journal of Computational Physics, 2014, 256:334-356.
    [39] Zhang T Y, Wang Q. Cahn-Hilliard vs singular Cahn-Hlliard equations in phase field modeling[J]. Communications in Computational Physics, 2010,7(2):362-382.
    [40] Ding L,ShuC, Ding H, et al. Steneil adaptive diffuse interface method for simulation of two-dimensional incompressible multiphase flows[J]. Computers & Fluids, 2010, 39(6):936-944.
    [41] Hu Y, HeQ, Li DC, et al. On the total mass conservation and the volume preservation in the diffuse interface method[J]. Computers &. Fluids, 2019,193:104291.
    [42] Sherwood J D. Breakup of fluid droplets in electric and magnetic fields[J]. Journal of Fluid Mechanics, 1988, 188:133-146.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

杨茜,曾忠,李家宇,张良奇.交变电场频率对弱导电液滴变形及融合的影响[J].重庆大学学报,2022,45(12):58~70

Copy
Share
Article Metrics
  • Abstract:439
  • PDF: 723
  • HTML: 945
  • Cited by: 0
History
  • Received:July 07,2021
  • Online: January 09,2023
Article QR Code