A fast life prediction method for hard metals under multiaxial high-cycle fatigue loading
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [36]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    According to the study of multiaxial fatigue life of 30CrMnSiA steel, the concept of equivalent S-N curve is proposed based on the uniaxial tension-compression and pure torsion S-N curves in this paper. Based on the equivalent S-N curves, an empirical formula is established to predict the multiaxial fatigue life of hard metal materials. The empirical formula is verified by predicting the fatigue life of various hard metal materials in the literature. Results show that more than 94.0% of the data points are in the ±3 times fatigue life scatter band, and more than 81.8% of the data points are in the ±2 times fatigue life scatter band.

    Reference
    [1] Wang C, Shang D G, Wang X W. A new multiaxial high-cycle fatigue criterion based on the critical plane for ductile and brittle materials. Journal of Materials Engineering and Performance, 2015, 24(2):816-824.
    [2] 亚伯·斯海维. 结构与材料的疲劳. 吴学仁, 等, 译. 北京:航空工业出版社, 2014.Schijve J. Fatigue of structures and materials. Wu X R, et al, trans. Beijing:Aviation Industry Press, 2014. (in Chinese)
    [3] Socie D, Marquis G. Multiaxial fatigue. Warrendale, Pennsylvania:SAE, 2000.
    [4] Zhu S P, Yu Z Y, Correia J, et al. Evaluation and comparison of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials. International Journal of Fatigue, 2018, 112:279-288.
    [5] Montalvão D, Qiu S W, Freitas M. A study on the influence of Ni-Ti M-Wire in the flexural fatigue life of endodontic rotary files by using Finite Element Analysis. Materials Science and Engineering:C, 2014, 40:172-179.
    [6] Reis L, Li B, de Freitas M. A multiaxial fatigue approach to rolling contact fatigue in railways. International Journal of Fatigue, 2014, 67:191-202.
    [7] 时新红, 鲍蕊, 张建宇, 等. 多轴高周疲劳失效准则的对比分析. 航空动力学报, 2008, 23(11):2007-2015. Shi X H, Bao R, Zhang J Y, et al. Comparative study of multiaxial high-cycle fatigue-prediction criteria. Journal of Aerospace Power, 2008, 23(11):2007-2015.(in Chinese)
    [8] 时新红, 张建宇, 鲍蕊, 等. 材料多轴高低周疲劳失效准则的研究进展. 机械强度, 2008, 30(3):515-521. Shi X H, Zhang J Y, Bao R, et al. Development of failure criterion on high-cycle and low-cycle multiaxial fatigue. Journal of Mechanical Strength, 2008, 30(3):515-521.(in Chinese)
    [9] Qi X X, Liu T Q, Shi X H, et al. A sectional critical plane model for multiaxial high-cycle fatigue life prediction. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(3):689-704.
    [10] Fatemi A, Shamsaei N. Multiaxial fatigue:an overview and some approximation models for life estimation. International Journal of Fatigue, 2011, 33(8):948-958.
    [11] Gough H J. Engineering steels under combined cyclic and static stresses. Journal of Applied Mechanics, 1950, 17(2):113-125.
    [12] Wang Y Y, Yao W X. Evaluation and comparison of several multiaxial fatigue criteria. International Journal of Fatigue, 2004, 26(1):17-25.
    [13] Dang Van K, Griveau B, Message O. On a new multiaxial fatigue limit criterion:theory and application//Biaxial and Multiaxial Fatigue. London:Mechanical Engineering Publications, 1989:479-496.
    [14] Dang van K, Cailletaud G, Flavenot J F, et al. Criterion for high-cycle fatigue failure under multiaxial loading//Biaxial and Multiaxial Fatigue. London:Mechanical Engineering Publications, 1989:459-478.
    [15] Papadopoulos I V. A new criterion of fatigue strength for out-of-phase bending and torsion of hard metals. International Journal of Fatigue, 1994, 16(6):377-384.
    [16] Papadopoulos I V. A high-cycle fatigue criterion applied in biaxial and triaxial out-of-phase stress conditions. Fatigue & Fracture of Engineering Materials & Structures, 1995, 18(1):79-91.
    [17] Papadopoulos I V. Long life fatigue under multiaxial loading. International Journal of Fatigue, 2001, 23(10):839-849.
    [18] Morel F. A fatigue life prediction method based on a mesoscopic approach in constant amplitude multiaxial loading. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21(3):241-256.
    [19] Morel F, Palin-Luc T, Froustey C. Comparative study and link between mesoscopic and energetic approaches in high cycle multiaxial fatigue. International Journal of Fatigue, 2001, 23(4):317-327.
    [20] Kluger K, Karolczuk A, Robak G. Validation of multiaxial fatigue criteria application to lifetime calculation of S355 steel under cyclic bending-torsion loading. Procedia Structural Integrity, 2019, 23:89-94.
    [21] Xu S, Zhu S P, Hao Y Z, et al. A new critical plane-energy model for multiaxial fatigue life prediction of turbine disc alloys. Engineering Failure Analysis, 2018, 93:55-63.
    [22] de Freitas M, Reis L, Meggiolaro M A, et al. Stress scale factor and critical plane models under multiaxial proportional loading histories. Engineering Fracture Mechanics, 2017, 174:104-116.
    [23] Matsubara G, Nishio K. Multiaxial high-cycle fatigue criterion considering crack initiation and non-propagation. International Journal of Fatigue, 2013, 47:222-231.
    [24] Papuga J. Improvements of two criteria for multiaxial fatigue limit evaluation. Bulletin of Applied Mechanics, 2010, 5(20):80-86.
    [25] Carpinteri A, Boaretto J, Fortese G, et al. Fatigue life estimation of fillet-welded tubular T-joints subjected to multiaxial loading. International Journal of Fatigue, 2017, 101:263-270.
    [26] Liu T Q, Shi X H, Zhang J Y, et al. Crack initiation and propagation of 30CrMnSiA steel under uniaxial and multiaxial cyclic loading. International Journal of Fatigue, 2019, 122:240-255.
    [27] Liu T Q, Shi X H, Zhang J Y, et al. Multiaxial high-cycl慥砠楦慡汴?晧慵瑥椠杦畡敩?摵慲浥愠杯敦?愳渰慃汲祍獮楓獩???湴瑥敥牬渠慷瑩楴潨渠慭汥??漠畴牥湮慳汩?潮映??慲瑥楳杳甠敡??㈠ね?????とづ??㈠???????戠牉?孴??嵮??慩牯潮污捬稠畊歯????偬愠灯畦朠慆????偵慥氬椠渲??甹挬?吱??债爱漰朵爲攱猹献?楢湲 ̄晛愲琸楝朠界敥?氠楓映敂?挠慁氠捣畲汩慴瑥楲潩湯?戠祦?楲洠灦汵敬浬敹渠瑲楥湶来?汳楥晤攠?摵整瀭敯湦搭数湨瑡?浥愠瑴敯牲楳慩汯?瀠慡牮慤洠敢瑥敮牤獩?楧港?浍畩汬瑬楥慲砠楋愠汊?映慂瑲楯杷畮攠?挠牗椮琠敍牵楬慴???湩瑡敬爠湦慡瑴楩潧湵慥氮??潨畩牬湡慤汥?潰晨??愺瑁楓杔畍攠???づ?の?????????????:553-568.
    [29] Papuga J, Vízková I, Nesládek M, et al. Validation data set for testing the criteria for multiaxial fatigue strength estimation. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(11):2259-2271.
    [30] Gasiak G, Pawliczek R. Application of an energy model for fatigue life prediction of construction steels under bending, torsion and synchronous bending and torsion. International Journal of Fatigue, 2003, 25(12):1339-1346.
    [31] Karolczuk A, Kluger K. Analysis of the coefficient of normal stress effect in chosen multiaxial fatigue criteria. Theoretical and Applied Fracture Mechanics, 2014, 73:39-47.
    [32] Karolczuk A, Kluger K, Łagoda T. A correction in the algorithm of fatigue life calculation based on the critical plane approach. International Journal of Fatigue, 2016, 83:174-183.
    [33] Yip M C, Jen Y M. Biaxial fatigue crack initiation life prediction of solid cylindrical specimens with transverse circular holes. International Journal of Fatigue, 1996, 18(2):111-117.
    [34] Wang Y Y, Yao W X. A multiaxial fatigue criterion for various metallic materials under proportional and nonproportional loading. International Journal of Fatigue, 2006, 28(4):401-408.
    [35] Luo P, Yao W X, Susmel L, et al. A survey on multiaxial fatigue damage parameters under non-proportional loadings. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(9):1323-1342.
    [36] 张成成. 复杂应力场下结构高周疲劳寿命分析. 南京:南京航空航天大学, 2010. Zhang C C. Fatigue life prediction of structures in HCF region under complex stress field. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese)
    [37] Gates N R, Fatemi A. On the consideration of normal and shear stress interaction in multi???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘天奇,张广鑫,张田,刘浩,亓新新,时新红.硬质金属材料多轴高周疲劳寿命快速预测方法[J].重庆大学学报,2023,46(3):94~102

Copy
Share
Article Metrics
  • Abstract:394
  • PDF: 940
  • HTML: 891
  • Cited by: 0
History
  • Received:April 16,2021
  • Online: March 28,2023
Article QR Code