Design and modeling of 5G base station adaptive antenna feed system
CSTR:
Author:
Affiliation:

School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China(62001087,62072079).

  • Article
  • | |
  • Metrics
  • |
  • Reference [17]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To provide a fully automatic antenna adaptive adjustment scheme with advantages of better performance, wider coverage and lower maintenance cost, the key design technologies of intelligent adjustment system of adaptive antenna feed system of 5g-based station are studied from the perspective of signal radiation direction adjustment of antenna panel. An adaptive adjustment strategy for base-station antenna based on deep reinforcement learning is proposed. The adaptive antenna feed system designed with the proposed strategy can use telecom RSRP coverage map as a data source, and obtain the current state of the observed values to automatically analyze data and adjust the antenna panels. In a virtual environment, the system based on reinforcement learning is simulated and trained, and the results are in line with expectations.

    Reference
    [1] 周俊, 权笑, 马建辉. 5G无线优化面临的挑战及应对策略[J]. 电信科学, 2020, 36(1): 58-65.Zhou J, Quan X, Ma J H. Challenge and strategy of 5G radio optimization[J]. Telecommunications Science, 2020, 36(1): 58-65. (in Chinese)
    [2] 赵国锋, 陈婧, 韩远兵, 等. 5G移动通信网络关键技术综述[J]. 重庆邮电大学学报(自然科学版), 2015, 27(4): 441-452.Zhao G F, Chen J, Han Y B, et al. Prospective network techniques for 5G mobile communication: a survey[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(4): 441-452. (in Chinese)
    [3] 杜威, 丁世飞. 多智能体强化学习综述[J]. 计算机科学, 2019, 46(8): 1-8.Du W, Ding S F. Overview on multi-agent reinforcement learning[J]. Computer Science, 2019, 46(8): 1-8. (in Chinese)
    [4] 殷昌盛, 杨若鹏, 朱巍, 等. 多智能体分层强化学习综述[J]. 智能系统学报, 2020, 15(4): 646-655.Yin C S, Yang R P, Zhu W, et al. A survey on multi-agent hierarchical reinforcement learning[J]. CAAI Transactions on Intelligent Systems, 2020, 15(4): 646-655. (in Chinese)
    [5] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
    [6] Goodfellow I, Bengio Y, Courville A, et al. Deep learning [M]. US:MIT press Cambridge, 2016.
    [7] Littman M L. Markov games as a framework for multi-agent reinforcement learning [J]. Machine Learning Proceedings, 1994: 157-163.
    [8] Foerster J N, Assael Y M, de Freitas N, et al. Learning to communicate with deep multi-agent reinforcement learning[EB/OL]. 2016: arXiv: 1605.06676. https://arxiv.org/abs/1605.06676.
    [9] Hong Z W, Su S Y, Shann T Y, et al. A deep policy inference Q-network for multi-agent systems[EB/OL]. 2017: arXiv: 1712.07893. https://arxiv.org/abs/1712.07893.
    [10] Hessel M, Modayil J, Van Hasselt H, et al. Rainbow: combining improvements in deep reinforcement learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 3215-3222.
    [11] Foerster J, Nardelli N, Farquhar G, et al. Stabilising experience replay for deep multi-agent reinforcement learning[C]//Proceedings of the 34th International Conference on Machine Learning - Volume 70. August 6 - 11, 2017, Sydney, NSW, Australia. New York: ACM, 2017: 1146–1155.
    [12] Babaeizadeh M, Frosio I, Tyree S, et al. GA3C: GPU-basedA3C for deep reinforcement learning[EB/OL]. 2016: arXiv: 1611.06256. https://arxiv.org/abs/1611.06256.
    [13] Abbas N, Zhang Y, Taherkordi A, et al. Mobile edge computing: a survey[J]. IEEE Internet of Things Journal, 2018, 5(1): 450-465.
    [14] 高松涛, 程日涛, 邓安达. 5G天馈系统下倾角设置原则研究[C]//5G网络创新研讨会(2020)论文集. 北京:移动通信,2020: 272-275.Gao ST , Cheng R T , Deng A D . Research on setting principle of dip angle of 5G antenna feed system [C]//5G Network Innovation Seminar (2020). Beijing, China: Mobile Communications, 2020: 272-275. (in Chinese)
    [15] Gupta A, Jha R K. A survey of 5G network: architecture and emerging technologies[J]. IEEE Access, 2015, 3: 1206-1232.
    [16] Galindo-Serrano A, Giupponi L. Distributed Q-learning for aggregated interference control in cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2010, 59(4): 1823-1834.
    [17] Sklar B. Rayleigh fading channels in mobile digital communication systems Part II: Mitigation[J]. IEEE Communications Magazine, 1997, 35(7): 102-109.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

沈煜航,王晟.5G基站自适应天馈系统设计与建模[J].重庆大学学报,2023,46(4):89~96

Copy
Share
Article Metrics
  • Abstract:341
  • PDF: 1020
  • HTML: 200
  • Cited by: 0
History
  • Received:December 25,2021
  • Online: May 12,2023
Article QR Code