An intelligent diagnosis method of switch machine based on deep belief network
CSTR:
Author:
Affiliation:

1.Automatic Control Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China;2.Gansu Provincial Key Laboratory of Traffic Information Engineering and Control, Lanzhou 730070, P. R. China

Clc Number:

U284

Fund Project:

Supported by National Natural Science Foundation of China(61863024, 71761023), the Scientific Research Funds for Colleges and Universities in Gansu Province(2018C-11, 2018A-22), and Natural Science Foundation of Gansu Province(18JR3RA130).

  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The traditional fault diagnosis method often relies on the complex signal processing procedures and experts’ rich experience. It requires precise signal segmentation, which is a tedious process and is not conducive to the field use. In this paper, the deep belief network (DBN) method optimized by particle swarm optimization (PSO) is used to directly extract features from the original power data, and the restricted Boltzmann machine (RBM) is employed to fit the data features layer by layer, achieving the data dimension reduction at the same time. Then, extreme learning machine (ELM) is used to classify each state, thereby improving the diagnosis speed. The results show the accuracy reaches 96%, which is a 4% improvement, and the required time is significantly reduced, when compared to support vector machine (SVM) optimized by PSO.

    Reference
    [1] 钟志旺, 陈建译, 唐涛, 等. 基于SVDD的道岔故障检测和健康评估方法[J]. 西南交通大学学报, 2018, 53(4): 842-849.Zhong Z W, Chen J Y, Tang T, et al. SVDD-based research on railway-turnout fault detection and health assessment[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 842-849.(in Chinese)
    [2] 张凯, 杜凯, 巨永锋. 基于BP神经网络的提速道岔故障诊断算法[J]. 武汉理工大学学报, 2014, 36(11): 77-81.Zhang K, Du K, Ju Y F. Algorithm of speed-up turnout fault diagnosis based on BP neural network[J]. Journal of Wuhan University of Technology, 2014, 36(11): 77-81.(in Chinese)
    [3] 王瑞峰, 陈旺斌. 基于灰色神经网络的S700K转辙机故障诊断方法研究[J]. 铁道学报, 2016, 38(6): 68-72.Wang R F, Chen W B. Research on fault diagnosis method for S700K switch machine based on grey neural network[J]. Journal of the China Railway Society, 2016, 38(6): 68-72.(in Chinese)
    [4] 许庆阳, 刘中田, 赵会兵. 基于隐马尔科夫模型的道岔故障诊断方法[J]. 铁道学报, 2018, 40(8): 98-106.Xu Q Y, Liu Z T, Zhao H B. Method of turnout fault diagnosis based on hidden Markov model[J]. Journal of the China Railway Society, 2018, 40(8): 98-106.(in Chinese)
    [5] 张钉, 李国宁. 基于改进WNN分析功率曲线的S700K转辙机故障诊断[J]. 铁道科学与工程学报, 2018, 15(8): 2123-2130.Zhang D, Li G N. Fault diagnosis of S700K switch machine based on improved WNN analyses power curve[J]. Journal of Railway Science and Engineering, 2018, 15(8): 2123-2130.(in Chinese)
    [6] 刘新发, 魏文军. 基于模糊聚类方法的S700K转辙机故障诊断[J]. 中南大学学报(自然科学版), 2019, 50(9): 2148-2155.Liu X F, Wei W J. Fault diagnosis of S700K switch machine based on fuzzy cluster method[J]. Journal of Central South University (Science and Technology), 2019, 50(9): 2148-2155.(in Chinese)
    [7] 钟志旺, 唐涛, 王峰. 基于PLSA和SVM的道岔故障特征提取与诊断方法研究[J]. 铁道学报, 2018, 40(7): 80-87.Zhong Z W, Tang T, Wang F. Research on fault feature extraction and diagnosis of railway switches based on PLSA and SVM[J]. Journal of the China Railway Society, 2018, 40(7): 80-87.(in Chinese)
    [8] 何攸旻. 高速铁路道岔故障诊断方法研究[D]. 北京: 北京交通大学, 2014.He Y M. Research on fault diagnosis method of high-speed railway turnout[D].Beijing: Beijing Jiaotong University, 2014. (in Chinese)
    [9] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
    [10] 熊景鸣, 潘林, 朱昇, 等. DBN与PSO-SVM的滚动轴承故障诊断[J]. 机械科学与技术, 2019, 38(11): 1726-1731.Xiong J M, Pan L, Zhu S, et al. Bearing fault diagnosis based on deep belief networks and particle swarm optimization support vector machine[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11): 1726-1731.(in Chinese)
    [11] Hinton G E. A practical guide to training restricted boltzmann machines[M]// Neural Networks: Tricks of the Trade. Berlin, Heidelberg: Springer, 2012: 599-619.
    [12] Hinton G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8): 1771-1800.
    [13] Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of ICNN'95 - International Conference on Neural Networks. November 27 - December 1, 1995, Perth, WA, Australia. IEEE, 2002: 1942-1948.
    [14] Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
    [15] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541). July 25-29, 2004, Budapest, Hungary. IEEE, 2005: 985-990.
    [16] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

司涌波,张国瑞,陈光武,魏宗寿.基于深度置信网络的道岔故障智能诊断方法[J].重庆大学学报,2023,46(7):75~85

Copy
Share
Article Metrics
  • Abstract:327
  • PDF: 637
  • HTML: 83
  • Cited by: 0
History
  • Received:August 11,2020
  • Online: August 02,2023
Article QR Code