Study on the law of tailings deposition under different discharge concentration
CSTR:
Author:
Affiliation:

1.Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China;2.Yunnan International Technology Transfer Center for Mineral Resources Development and Solid Waste Resource Utilization, Kunming 650093, P. R. China;3.Department of Safety Engineering, Jiangxi University of Science and Technology, Nanchang 330013, P. R. China;4.Yunnan Phosphate Group Co., Ltd., Kunming 650600, P. R. China;5.China Nonferrous Metal Industry Kunming Survey Design Institute Co., Ltd., Kunming 650051, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (52174114), and the Open Foundation of the National Engineering Research Center for Phosphorus Resources Development and Utilization (NECP2022-07).

  • Article
  • | |
  • Metrics
  • |
  • Reference [19]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The deposition law of tailings after discharge affects the stability of tailings dam. In order to study the characteristics of tailings deposition under different slurry discharge concentrations, this paper takes a tailings pond in Yunnan as the research object, and studies the tailings deposition law under different slurry discharge concentrations through field tests and indoor scale dam model tests. The critical state of single tailings particles is analyzed, and the relationship between the movement-deposition critical velocity of tailings particles and the migration distance formula of particles with different particle sizes on dry beaches are derived. The results show that there are more coarse tailings in the front of the dam of the sedimentary beach, and the farther away from the sub-dam, the more fine-grained tailings are deposited. The tailings flow velocity on the dry beach surface is negatively correlated with the slurry concentration and positively correlated with the tailings mortar pressure. The greater the concentration of the viscous high concentration tailings mortar, the weaker the flow force, and the greater the slope formed by the deposition; with the increase of slurry concentration, the deposition length of slurry also increases. The deposition distance of tailings particles on the dry beach surface is proportional to the initial velocity of slurry discharge, and inversely proportional to the dry beach slope, slurry discharge concentration and particle size. The research results can provide some reference for the stability analysis of tailings dam.

    Reference
    [1] 尹光志, 敬小非, 魏作安, 等. 粗、细尾砂筑坝渗流特性模型试验及现场实测研究[J]. 岩石力学与工程学报, 2010, 29(S2): 3710-3718.Yin G Z, Jing X F, Wei Z A, et al. Study of model test of seepage characteristics and field measurement of coarse and fine tailings dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3710-3718. (in Chinese)
    [2] 敬小非, 尹光志, 魏作安, 等. 模型试验与数值模拟对尾矿坝稳定性综合预测[J]. 重庆大学学报(自然科学版), 2009, 32(3): 308-313.Jing X F, Yin G Z, Wei Z A, et al. Model test and numerical simulation of tailing dam safety forecasting[J]. Journal of Chongqing University (Natural Science Edition), 2009, 32(3): 308-313. (in Chinese)
    [3] 巫尚蔚, 杨春和, 张超, 等. 干滩表层沉积尾矿的细观几何特征研究[J]. 岩石力学与工程学报, 2016, 35(4): 768-777.Wu S W, Yang C H, Zhang C, et al. Microscopic geometric characteristics of surface sedimentary tailings[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(4): 768-777. (in Chinese)
    [4] 史采星, 郭利杰, 杨超, 等. 某铜镍矿尾矿流变参数测试及管道输送阻力计算[J]. 中国矿业, 2018, 27(B10): 138-141.Shi C X, Guo L J, Yang C, et al. Experimental study of the rheological parameters of a copper nickel mine tailings and calculation of resistance in pipeline transportation[J]. China Mining Magazine, 2018, 27(B10): 138-141. (in Chinese)
    [5] 李宗楠, 郭利杰, 余斌, 等. 基于宾汉姆体的高浓度尾砂浆剪切变稀规律研究[J]. 黄金科学技术, 2017, 25(4): 33-38.Li Z N, Guo L J, Yu B, et al. Shearing thinning behavior of high concentration slurry based on Bingham model[J]. Gold Science and Technology, 2017, 25(4): 33-38. (in Chinese)
    [6] 张东明, 郑彬彬, 尹光志, 等. 高浓缩分级尾矿上游法堆坝及模型试验研究[J]. 岩土力学, 2016, 37(7): 1832-1838, 1867.Zhang D M, Zheng B B, Yin G Z, et al. Model tests on upstream dam-building method using concentrated and classified tailings[J]. Rock and Soil Mechanics, 2016, 37(7): 1832-1838, 1867. (in Chinese)
    [7] 唐永俊, 王光进, 许志发, 等. 尾矿库干滩尾矿粒径的淤积特性研究[J]. 泥沙研究, 2018, 43(3): 50-56.Tang Y J, Wang G J, Xu Z F, et al. Study on deposition characteristics of tailings particle size in dry beach of tailings pond[J]. Journal of Sediment Research, 2018, 43(3): 50-56. (in Chinese)
    [8] 赵怀刚, 王光进, 许志发, 等. 多因素影响下尾矿库坝体沉积特性的试验研究[J]. 中国安全生产科学技术, 2018, 14(5): 95-101.Zhao H G, Wang G J, Xu Z F, et al. Experimental study on deposition characteristics of tailings dam body influenced by multiple factors[J]. Journal of Safety Science and Technology, 2018, 14(5): 95-101. (in Chinese)
    [9] Jopony M, Usup G, Mohamed M. Particle size distribution of copper mine tailings from lohan ranau Sabah and its relationship with heavy metal content[J]. Pertanika, 1987, 10(1): 37-40.
    [10] Fitton T G, Bhattacharya S N, Chryss A G. Three-dimensional modeling of tailings beach shape[J]. Computer-Aided Civil and Infrastructure Engineering, 2008, 23(1): 31-44.
    [11] Kwak M, James D F, Klein K A. Flow behaviour of tailings paste for surface disposal[J]. International Journal of Mineral Processing, 2005, 77(3): 139-153.
    [12] Henriquez J, Simms P. Dynamic imaging and modelling of multilayer deposition of gold paste tailings[J]. Minerals Engineering, 2009, 22(2): 128-139.
    [13] Babaoglu Y, Simms P H. Simulating deposition of high density tailings using smoothed particle hydrodynamics[J]. Korea-Australia Rheology Journal, 2017, 29(3): 229-237.
    [14] 余绍维, 孙华, 王兆昌, 等. 上游法尾矿坝堆积尾矿的沉积规律与尾矿堆积坝管理的相关关系[J]. 中国新技术新产品, 2013(6): 175-177.Yu S W, Sun H, Wang Z C, et al. Correlation between the deposition law of tailings accumulated in upstream tailings dam and the management of tailings accumulation dam[J]. China New Technologies and New Products, 2013(6): 175-177. (in Chinese)
    [15] 梁冰, 吕志强, 金佳旭, 等. 排浆速度对尾矿沉积影响的模型试验研究[J]. 实验力学, 2017, 32(6): 880-887.Liang B, Lv Z Q, Jin J X, et al. Model experimental study of effect of slurry draining speed on tailings deposition[J]. Journal of Experimental Mechanics, 2017, 32(6): 880-887. (in Chinese)
    [16] Huang S H, Li W, Cheng L J. On equation of discrete solid particles' motion in arbitrary flow field and its properties[J].Applied Mathematics and Mechanics, 2000, 21(3): 297-310.
    [17] 郑艳娜, 朱永英. 水力学[M]. 南京: 东南大学出版社, 2017.Zheng Y N, Zhu Y Y. Hydraulics[M]. Nanjing: Southeast University Press, 2017. (in Chinese)
    [18] 严导淦. 流体力学中的总流伯努利方程[J]. 物理与工程, 2014, 24(4): 47-53.Yan D G. The total flow Bernoulli equation in fluid mechanics[J]. Physics and Engineering, 2014, 24(4): 47-53. (in Chinese)
    [19] 李芳芳, 薛琨, 白春华. 竖直振动颗粒床对流机制的颗粒尺度实验研究[J]. 实验力学, 2013, 28(3): 290-298.Li F F, Xue K, Bai C H. Experimental study of particle size in convection mechanism of vertically vibrated particle bed[J]. Journal of Experimental Mechanics, 2013, 28(3):290-298. (in Chinese)
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

张雕,王光进,莘英铭,董致成,李小双,李耀基,眭素刚.不同排浆浓度下的尾矿沉积规律研究[J].重庆大学学报,2023,46(8):68~77

Copy
Share
Article Metrics
  • Abstract:377
  • PDF: 636
  • HTML: 68
  • Cited by: 0
History
  • Received:April 28,2023
  • Online: August 25,2023
Article QR Code