Quasi-static test of concrete-piers confined by square steel tube
CSTR:
Author:
Affiliation:

Fujian Provincial Key Laboratory of Advanced Technology and Informatization in Civil Engineering, Fujian University of Technology, Fuzhou 350118, P. R. China

Clc Number:

U443.22

Fund Project:

Supported by National Natural Science Foundation of China (514083128), Natural Science Foundation of Fujian Province (201701471), and Transportation Science and Technology Project of Fujian Province (202003).

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To study the impact of different restraint methods and the connection structure between concrete piers and caps on the seismic performance and various indicators of bridge pier specimens, three experimental setups were designed: one featuring a prefabricated square steel tube confined concrete pier (SYP-GT4 specimen), another with a square steel tube confined integral cast-in-place concrete pier (SYZ specimen), and a third with a square section integral cast-in-place concrete pier (SFZ specimen). The pseudo-static test was carried out on the pier caps using displacement loading method, and the failure processes and modes of the specimen were closely observed. Various characteristics, including failure modes, load-displacement hysteretic curves, load-displacement skeleton curves, ductility, energy dissipation and other relevant parameters of the piers were analyzed. The results show that all three concrete pier specimens exhibited similar failure modes, characterized by integral failure due to compression and bending. Notably, SYZ specimens outperformed SFZ specimens with a 46.5% increase in horizontal peak load, superior hysteretic energy dissipation capacity, and better ductility, indicating that integral bridge piers constrained by square steel tube demonstrate superior seismic performance compared to cast-in-place concrete piers. Furthermore, when comparing SYP-GT4 specimens to SYZ specimens, they exhibited a similar horizontal peak load value, a 24.1% increase in displacement ductility coefficient, minimal residual displacement, and enhanced deformation recovery capabilities. The hysteresis curve showed a fuller spindle shape without obvious pinching. The connection structure has little effect on the degradation of strength and stiffness, and their seismic performance is similar.

    Reference
    Related
    Cited by
Get Citation

欧智菁,陈玮悦,林上顺,薛文浩.方钢管约束混凝土桥墩拟静力试验[J].重庆大学学报,2023,46(10):40~50

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 29,2021
  • Revised:
  • Adopted:
  • Online: November 06,2023
  • Published:
Article QR Code