Lithium battery remaining life prediction method based on improved grey wolf optimization least squares support vector machine
CSTR:
Author:
Affiliation:

School of Marine and Energy and Power Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China

Clc Number:

TM912

Fund Project:

Supported by National Key Research and Development Program Project(2019YFE0104600) and National Natural Science Foundation of China(51909199, 52271329).

  • Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To solve the problem of accurately predicting remaining life of lithium battery, this paper proposes an indirect prediction method based on improved grey wolf optimization least-squares support vector machine (IGWO-LSSVM). Three indirect health factors characterizing battery performance degradation are derived from discharge characteristic curves. To enhance prediction accuracy, the study incorporates a tent chaotic map, a nonlinear decreasing convergence factor, and a Levi flight strategy into the grey wolf algorithm. Combined with the LSSVM model, the lithium battery life prediction model with global optimization is formed. The proposed method is verified using the NASA data set and compared with GWO-LSSVM, PSO-ELM and BP algorithms. Experimental results show that the improved algorithm proposed in this paper outperforms other methods in terms of prediction accuracy.

    Reference
    [1] 马建, 刘晓东, 陈轶嵩, 等.中国新能源汽车产业与技术发展现状及对策[J].中国公路学报, 2018, 31(8): 1-19.Ma J, Liu X D, Chen Y S, et al. Current status and countermeasures for China’s new energy automobile industry and technology development[J].China Journal of Highway and Transport,2018,31(8):1-19. (in Chinese)
    [2] 庞辉, 郭龙, 武龙星, 等. 考虑环境温度影响的锂离子电池改进双极化模型及其荷电状态估算[J]. 电工技术学报, 2021, 36(10): 2178-2189.Pang H, Guo L, Wu L X, et al. An improved dual polarization model of Li-ion battery and its state of charge estimation considering ambient temperature[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2178-2189.(in Chinese)
    [3] Thomas E V, Bloom I, Christophersen J P,et al.Statistical methodology for predicting the life of lithium-ion cells via accelerated degradation testing[J].Journal of Power Sources, 2008,184(1):312-317.
    [4] Wang D, Yang F F, Tsui K L, et al. Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(6): 1282-1291.
    [5] Guha A, Patra A.Online estimation of the electrochemical impedance spectrum and remaining useful life of lithium-ion batteries[J].IEEE Transactions on Instrumentation and Measurement,2018,67(8):1836-1849.
    [6] Li X, Ma Y,Zhu J J.An online dual filters RUL prediction method of lithium-ion battery based on unscented particle filter and least squares support vector machine[J].Measurement, 2021,184:109935.
    [7] 徐佳宁, 倪裕隆, 朱春波. 基于改进支持向量回归的锂电池剩余寿命预测[J].电工技术学报, 2021, 36(17): 3693-3704.Xu J N, Ni Y L, Zhu C B. Remaining useful life prediction for lithium-ion batteries based on improved support vector regression[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3693-3704. (in Chinese)
    [8] Patil M A, Tagade P, Hariharan K S, et al.A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation[J].Applied Energy,2015, 159:285-297.
    [9] 王瀛洲, 倪裕隆, 郑宇清, 等. 基于ALO-SVR的锂离子电池剩余使用寿命预测[J].中国电机工程学报,2021,41(4):1445-1457,1550.Wang Y Z, Ni Y L, Zheng Y Q, et al. Remaining useful life prediction of lithium-ion batteries based on support vector regression optimized and ant lion optimizations[J]. Proceedings of the CSEE, 2021, 41(4): 1445-1457, 1550. (in Chinese)
    [10] 杨战社, 王云浩, 孔晨再. 基于GWO-SVR的锂电池剩余使用寿命预测[J].电源学报, 2023, 21(2):154-162.Yang Z S, Wang Y H, Kong C Z. Prediction of remaining useful life of lithium-ion batteries based on GWO-SVR method[J]. Journal of Power Supply, 2023, 21(2):154-162. (in Chinese)
    [11] 宁青菊, 施梦琢, 史永胜, 等. 基于最优充放电曲线的锂离子电池寿命预测方法[J].陕西科技大学学报,2021,39(2): 153-160.Ning Q J, Shi M Z, Shi Y S, et al. Lithium-ion battery life prediction method based on optimal charge and discharge curve[J]. Journal of Shaanxi University of Science & Technology, 2021, 39(2): 153-160. (in Chinese)
    [12] Wang Q, Ye M, Wei M, et al.Co-estimation of state of charge and capacity for lithium-ion battery based on recurrent neural network and support vector machine[J].Energy Reports,2021,7:7323-7332.
    [13] 王萍, 张吉昂, 程泽. 基于最小二乘支持向量机误差补偿模型的锂离子电池健康状态估计方法[J]. 电网技术, 2022, 46(2): 613-623.Wang P, Zhang J, Cheng Z. State of health estimation of Li-ion battery based on least squares support vector machine error compensation model[J]. Power System Technology, 2022, 46(2): 613-623.(in Chinese)
    [14] 姜滨, 孙丽萍, 曹军, 等. 基于PSO优化LS-SVM的木材含水率软测量建模[J]. 重庆大学学报, 2016, 39(1): 48-54.Jiang B, Sun L P, Cao J, et al. Soft sensor model for wood moisture content based on LS-SVM optimized by PSO[J]. Journal of Chongqing University, 2016, 39(1): 48-54.(in Chinese)
    [15] 杨晓敏. 改进灰狼算法优化支持向量机的网络流量预测[J].电子测量与仪器学报, 2021, 35(3): 211-217.Yang X M. Improved gray wolf algorithm to optimize support vector machine for network traffic prediction[J].Journal of Electronic Measurement and Instrumentation, 2021, 35(3): 211-217. (in Chinese)
    [16] 赵超, 戴坤成. 自适应加权最小二乘支持向量机的空调负荷预测[J]. 重庆大学学报, 2016, 39(1): 55-64.Zhao C, Dai K C. Modeling air-conditioning load forecasting based on adaptive weighted least squares support vector machine[J]. Journal of Chongqing University, 2016, 39(1): 55-64. (in Chinese)
    [17] Chen G J, Liu Y H, Wang S C, et al. Searching for the optimal current pattern based on grey wolf optimizer and equivalent circuit model of Li-ion batteries[J]. Journal of Energy Storage, 2021, 33:101933.
    [18] Miao D, Hossain S. Improved gray wolf optimization algorithm for solving placement and sizing of electrical energy storage system in micro-grids[J]. ISA Transactions, 2020, 102: 376-387.
    [19] 滕志军, 吕金玲, 郭力文, 等.一种基于Tent映射的混合灰狼优化的改进算法[J].哈尔滨工业大学学报, 2018, 50(11): 40-49.Teng Z J, Lü J J, Guo L W, et al. An improved hybrid grey wolf optimization algorithm based on Tent mapping[J]. Journal of Harbin Institute of Technology, 2018, 50(11): 40-49. (in Chinese)
    [20] 李彦苍,徐培东.基于自适应步长和莱维飞行策略的改进狼群算法[J/OL].重庆大学学报:1-18[2022-06-22]. http://kns.cnki.net/kcms/detail/50.1044.N.20210608.0958.002.html.Li Y C, Xu P D. Improved wolf pack algorithm based on adaptive step size and levy flight strategy[J]. Journal of Chongqing University:1-18[2022-06-22]. http://kns.cnki.net/kcms/detail/50.1044.N.20210608.0958.002.html.(in Chinese)
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

郑青根,杨祥国,刘冬,李昕.改进灰狼优化最小二乘支持向量机的锂电池剩余寿命预测[J].重庆大学学报,2023,46(11):78~89

Copy
Share
Article Metrics
  • Abstract:302
  • PDF: 677
  • HTML: 56
  • Cited by: 0
History
  • Received:June 22,2022
  • Online: November 28,2023
Article QR Code