Design Method of IGBT Module Condition Monitoring System for Submodule in High Power MMC system
CSTR:
Author:
Affiliation:

1.Shinan Power Supply Branch Company of State Grid Chongqing Electric Power Company, Chongqing 401136, P. R. China;2.State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing 400044, P. R. China

Clc Number:

TM464

Fund Project:

Supported by the National Key Research and Development Program of China(2018YFB0905800), National Science Fund Subsidized Project(51707024, 5200070692) and National “111” Project(B08036).

  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The insulated gate bipolar transistor (IGBT) module plays a pivotal role in the modular multilevel converter (MMC), making online monitoring essential for ensuring the MMC system’s safety, reliability, and cost-effectiveness. Addressing the challenge of real-time monitoring for multi-chip parallel IGBT modules in the MMC system, this paper presents a design method of condition monitoring system based on the relationship between the module’s case temperature distribution and its aging state, which enables adaptive evaluation and management of IGBT module under different operating conditions. Firstly, the impact of aging failure on the heat flow of IGBT modules in MMC sub-modules is analyzed, with case temperature selected as the characteristic parameter representing the module's state. Secondly, an aging state monitoring model for IGBT, based on neural network, is established. This model is adaptable to different working points, allowing for the characterization and identification of module states according to the demand preference of different application scenarios. Finally, the proposed condition monitoring system design method is verified on MMC test platform, demonstrating its feasibility and effectiveness. This paper provides an innovative solution for IGBT status monitoring in MMC sub-modules under high power operating conditions, offering a practical and effective approach to state maintenance.

    Reference
    [1] Li B, Ma Z M, Hidalgo-Gonzalez P, et al. Modeling the impact of EVs in the Chinese power system: pathways for implementing emissions reduction commitments in the power and transportation sectors[J]. Energy Policy, 2021, 149: 111962.
    [2] 袁志昌, 郭佩乾, 刘国伟, 等. 新能源经柔性直流接入电网的控制与保护综述[J]. 高电压技术, 2020, 46(5): 1460-1475.Yuan Z C, Guo P Q, Liu G W, et al. Review on control and protection for renewable energy integration through VSC-HVDC[J]. High Voltage Engineering, 2020, 46(5): 1460-1475.(in Chinese)
    [3] 叶杰, 汤广福, 赵成勇. 多电压等级柔性直流电网建模与稳定性分析[J]. 高电压技术, 2022, 48(4): 1433-1441.Ye J, Tang G F, Zhao C Y. Modeling and stability analysis for flexible DC power grid with multi-voltage levels[J]. High Voltage Engineering, 2022, 48(4): 1433-1441.(in Chinese)
    [4] 苑宾, 梅念, 陈东, 等. 三次谐波注入对MMC运行特性的影响[J]. 高电压技术, 2020, 46(3): 1060-1068.Yuan B, Mei N, Chen D, et al. Influences of third harmonic injection on the operation characteristics of MMC system[J]. High Voltage Engineering, 2020, 46(3): 1060-1068.(in Chinese)
    [5] 邓吉利. 柔性直流换流阀压接式IGBT器件可靠性建模与评估[D]. 重庆: 重庆大学, 2018.Deng J L. Reliability modeling and assessment of press-pack igbt devices for the flexible DC converter valve[D]. Chongqing: Chongqing University, 2018.
    [6] Yang S , Bryant A, Mawby P, et al. An industry-based survey of reliability in power electronic converters[C]// 2009 IEEE Energy Conversion Congress and Exposition. IEEE, 2009.
    [7] 吕高泰, 雷万钧, 赵佳琪, 等. MMC子模块关键器件长时间尺度运行工况老化分析与可靠性评估[J]. 高电压技术, 2020, 46(10): 3469-3476.Lü G T, Lei W J, Zhao J Q, et al. Long-time scale working condition based aging analysis and reliability evaluation of key devices in MMC submodule[J]. High Voltage Engineering, 2020, 46(10): 3469-3476.(in Chinese)
    [8] Mandeya R, Chen C L, Pickert V, et al. Gate–emitter pre-threshold voltage as a health-sensitive parameter for IGBT chip failure monitoring in high-voltage multichip IGBT power modules[J]. IEEE Transactions on Power Electronics, 2019, 34(9): 9158-9169.
    [9] Wang K H, Zhou L W, Sun P J, et al. Monitoring bond wires fatigue of multichip IGBT module using time duration of the gate charge[J]. IEEE Transactions on Power Electronics, 2021, 36(1): 888-897.
    [10] Wang K H, Zhou L W, Sun P J, et al. Monitoring bond wire defects of IGBT module using module transconductance[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(2): 2201-2211.
    [11] Yuan W B, He Y G, Li Z G, et al. A real-time aging monitoring method of parallel-connected IGBT modules[J]. Materials Science in Semiconductor Processing, 2021, 124: 105555.
    [12] Dalessandro L, Karrer N, Ciappa M, et al. Online and offline isolated current monitoring of parallel switched high-voltage multi-chip IGBT modules[C]//2008 IEEE Power Electronics Specialists Conference. IEEE, 2008: 2600-2606.
    [13] Chen C L, Pickert V, Al-Greer M, et al. Localization and detection of bond wire faults in multichip IGBT power modules[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 7804-7815.
    [14] Tomonaga H, Tsukuda M, Okoda S, et al. 16-Channel micro magnetic flux sensor array for IGBT current distribution measurement[J]. Microelectronics Reliability, 2015, 55(9/10): 1357-1362.
    [15] Wang Z, Qiao W, Qu L Y. A real-time adaptive IGBT thermal model based on an effective heat propagation path concept[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 3936-3946.
    [16] Hu Z, Du M X, Wei K X, et al. An adaptive thermal equivalent circuit model for estimating the junction temperature of IGBTs[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(1): 392-403.
    [17] 胡姚刚, 李辉, 白鹏飞, 等. 基于壳温差的风电变流器IGBT模块基板焊层健康状态评估[J]. 太阳能学报, 2020, 41(4): 194-204.Hu Y G, Li H, Bai P F, et al. Health assessment of base plate solder of igbt module in wind power converter based on shell temperature difference[J]. Acta Energiae Solaris Sinica, 2020, 41(4): 194-204.(in Chinese)
    [18] 张宇娇, 范虹兴, 张炫焜, 等. 柔性直流输电换流阀用IGBT模块焊料层疲劳寿命研究[J]. 高电压技术, 2020, 46(10): 3381-3389.Zhang Y J, Fan H X, Zhang X K, et al. Fatigue life analysis of IGBT module solder layer for VSC-HVDC valve[J]. High Voltage Engineering, 2020, 46(10): 3381-3389.(in Chinese)
    [19] 夏宏鉴, 陈民铀, 赖伟, 等. 基于频带能量的模块化多电平换流阀中金属化薄膜电容器失效检测方法[J]. 中国电机工程学报, 2021, 41(22): 7782-7793.Xia H J, Chen M Y, Lai W, et al. Failure detection method for metalized polypropylene film capacitor in modular multilevel converter based on band energy[J]. Proceedings of the CSEE, 2021, 41(22): 7782-7793.(in Chinese)
    [20] 肖飞, 刘宾礼, 罗毅飞. IGBT疲劳失效机理及其健康状态监测[M]. 北京: 机械工业出版社, 2019.Xiao F, Liu B L, Luo Y F. Fatigue failure mechanism of IGBT and its health monitoring[M]. Beijing: China Machine Press, 2019.(in Chinese)
    [23] 韩晓云, 郝全睿, 许烽, 等. 模块化多电平换流器的可靠性维修周期优化[J]. 高电压技术, 2020, 46(10): 3429-3439.Han X Y, Hao Q R, Xu F, et al. Optimization of reliability maintenance cycle of modular multilevel converter[J]. High Voltage Engineering, 2020, 46(10): 3429-3439.(in Chinese)
    [21] B?czkowski S, Ghimre P, de Vega A R, et al. Online Vce measurement method for wear-out monitoring of high power IGBT modules[C]//2013 15th European Conference on Power Electronics and Applications (EPE). Lille, France: IEEE, 2013: 1-7.
    [22] Gelagaev R, Jacqmaer P, Driesen J. A fast voltage clamp circuit for the accurate measurement of the dynamic ON-resistance of power transistors[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2): 1241-1250.
    [24] Hu B R, Hu Z D, Ran L, et al. Heat-flux-based condition monitoring of multichip power modules using a two-stage neural network[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7489-7500.
    [25] 杨立敏, 王晖, 韩志勇, 等. 全桥型模块化多电平换流器损耗简化计算模型研究[J]. 电工电能新技术, 2019, 38(8): 53-62.Yang L M, Wang H, Han Z Y, et al. Research on simplified loss model of full-bridge modular multilevel converters[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(8): 53-62.(in Chinese)
    [26] Khomfoi S, Tolbert L M. Fault diagnosis and reconfiguration for multilevel inverter drive using AI-based techniques[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 2954-2968.
    [27] Tang Y, Ran L, Alatise O, et al. Improved testing capability of the model-assisted testing scheme for a modular multilevel converter[J]. IEEE Transactions on Power Electronics, 2016, 31(11): 7823-7836.
    [28] Holman J P. Heat transfer[M]. New York: McGraw-Hill, 2009.
    [29] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.Zhou Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016.(in Chinese)
    [30] 王月月, 陈民铀, 赖伟, 等. 基于MOSFET外特性参量的自适应模糊神经网络状态评估模型[J]. 电工技术学报, 2018, 33(18): 4286-4294.Wang Y Y, Chen M Y, Lai W, et al. Healthy condition assessment on MOSFETs based on external characteristic parameters and adaptive neuro-fuzzy inference system[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4286-4294.(in Chinese)
    Related
    Cited by
Get Citation

罗丹,陈民铀,赖伟,夏宏鉴,黎昌盛.大功率MMC系统中子模块IGBT状态监测系统设计方法[J].重庆大学学报,2023,46(11):102~118

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 01,2023
  • Online: November 28,2023
Article QR Code