Application of LOLIMOT to CNG engine NOx emission prediction test
CSTR:
Author:
Affiliation:

1.Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, P. R. China;2.Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070, P. R. China

Clc Number:

TK421.5

Fund Project:

Supported by the National Key Research and Development Program (2018YFB0106401).

  • Article
  • | |
  • Metrics
  • |
  • Reference [21]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To solve the problem of insufficient prediction accuracy of the local linear model tree (LOLIMOT) emission model in the development of the selective catalytic reduction technology (SCR) control strategy, a method of optimizing the space boundary is proposed. This method aims to constrain the super-rectangular input space of the original model within the scope of physical definitions in the modified LOLIMOT model. Through the identification test of a compressed natural gas (CNG) engine, the effects of this method on prediction results are analyzed considering distribution characteristics and calculation principles. The results show that compared with the original algorithm, the linear correlation R2 of the improved algorithm is increased by 1.9%, verifying the effectiveness of the proposed strategy. The modified LOLIMOT algorithm demonstrates higher convergence speed and stability, offering valuable application advantages in the field of emission models.

    Reference
    [1] 京特·P·默克, 吕迪格·泰希曼. 内燃机原理:工作原理、数值模拟与测量技术[M]. 高宗英, 译. 北京:机械工业出版社, 2018.Merker G P, Teichmann R. Principles of Internal combustion engines: working principles, numerical simulation and testing technology[M]. Gao Z Y, trans. Beijing: China Machine Press, 2018. (in Chinese)
    [2] 胡杰, 林峰, 王天田, 等. 基于神经网络偏最小二乘法的柴油机NOx排放预测模型[J]. 内燃机学报, 2015, 33(6): 510-515.Hu J, Lin F, Wang T T, et al. Prediction of diesel engine NOx emission based on neural network partial least squares[J]. Transactions of CSICE, 2015, 33(6): 510-515. (in Chinese)
    [3] Yusaf T F, Buttsworth D R, Saleh K H, et al. CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network[J]. Applied Energy, 2010, 87(5): 1661-1669.
    [4] 纪守领, 李进锋, 杜天宇, 等. 机器学习模型可解释性方法、应用与安全研究综述[J]. 计算机研究与发展, 2019, 56(10): 2071-2096.Ji S L, Li J F, Du T Y, et al. Survey on techniques, applications and security of machine learning interpretability[J]. Journal of Computer Research and Development, 2019, 56(10): 2071-2096.(in Chinese)
    [5] Jalili-Kharaajoo M, Ranji R, Bagherzadeh H. Predictive control of a fossil power plant based on locally linear model tree (LOLIMOT)[C]//Proceedings of 2003 IEEE Conference on Control Applications, CCA 2003, June 25-25, 2003, Istanbul, Turkey. IEEE, 2003: 633-638.
    [6] Bishop C M. Pattern recognition and machine learning[M]. New York: Springer Verlag, 2007: 663-666.
    [7] Martínez-Morales J D, Palacios E, Carrillo G A V. Modeling of internal combustion engine emissions by LOLIMOT algorithm[J]. Procedia Technology, 2012, 3: 251-258.
    [8] 王新宇, 何超, 李加强, 等. 基于局部线性模型树的高压共轨柴油机排放模型[J]. 车用发动机, 2015(4): 16-20.Wang X Y, He C, Li J Q, et al. Emission model of high-pressure common rail diesel engine based on local linear model tree[J]. Vehicle Engine, 2015(4): 16-20. (in Chinese)
    [9] 戴金池, 庞海龙, 俞妍, 等. 基于LSTM神经网络的柴油机NOx排放预测[J]. 内燃机学报, 2020, 38(5): 457-463.Dai J C, Pang H L, Yu Y, et al. Prediction of diesel engine NOx emissions based on long-short term memory neural network[J]. Transactions of CSICE, 2020, 38(5): 457-463. (in Chinese)
    [10] 吴静, 吴晓燕, 陈永兴, 等. 基于改进灰色关联分析的仿真模型验证方法[J]. 系统工程与电子技术, 2010, 32(8): 1677-1679.Wu J, Wu X Y, Chen Y X, et al. Validation of simulation models based on improved grey relational analysis[J]. Systems Engineering and Electronics, 2010, 32(8): 1677-1679. (in Chinese)
    [11] 田民, 刘思峰, 卜志坤. 灰色关联度算法模型的研究综述[J]. 统计与决策, 2008(1): 24-27.Tian M, Liu S F, Bu Z K. A review of grey relational degree algorithm model [J]. Statistics and Decision making, 2008(1): 24-27. (in Chinese)
    [12] 胡磊, 何超, 李加强, 等. 面向闭环控制的柴油机在线燃烧模型研究[J]. 汽车技术, 2015(8): 24-28.Hu L, He C, Li J Q, et al. Model research for closed-loop control of diesel engine online combustion[J]. Automobile Technology, 2015(8): 24-28. (in Chinese)
    [13] Castric S, Cherfi Z, Boudaoud N, et al. A new Bayesian technique for readjusting LOLIMOT models: example with diesel engine emissions[J]. International Journal of Design Engineering, 2009, 2(4): 472-494.
    [14] Nelles O. Nonlinear system identification[M]. Berlin: Springer Verlag, 2001:343-389.
    [15] Guidotti R, Monreale A, Ruggieri S, et al. A survey of methods for explaining black box models[J]. ACM Computing Surveys, 2019, 51(5): 1-42.
    [16] Hartmann B, Nelles O. Structure trade-off strategy for local model networks[C]//2012 IEEE International Conference on Control Applications, October 3-5, 2012, Dubrovnik, Croatia. IEEE, 2012: 451-456.
    [17] Nelles O. Axes-oblique partitioning strategies for local model networks[C]//2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, October 4-6, 2006, Munich, Germany. IEEE, 2006: 2378-2383.
    [18] 王伟, 李建锋, 刘帅. 基于改进局部线性模型树的航空发动机过渡态非线性辨识[J]. 信息与控制, 2020, 49(5): 560-569, 577.Wang W, Li J F, Liu S. Nonlinear identification for aero-engine transient process based on modified local linear model tree[J]. Information and Control, 2020, 49(5): 560-569, 577. (in Chinese)
    [19] 杜晓林. 大规模二维散点图矩阵的快速可视化技术[D]. 哈尔滨:哈尔滨工业大学, 2010.Du X L. Technology on fast visualization of large scatter plot matrix[D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese)
    [20] 杜倩颖, 倪计民, 陈沁青, 等. HILOMOT模型在柴油机快速标定试验中的应用[J]. 内燃机学报, 2018, 36(4): 347-352.Du Q Y, Ni J M, Chen Q Q, et al. Application of HILOMOT in rapid calibration test of diesel engine[J]. Transactions of CSICE, 2018, 36(4): 347-352. (in Chinese)
    [21] 李捷辉, 周大伟, 段畅. BP神经网络在双燃料发动机排放预测中的应用[J]. 机械设计与制造, 2018(3): 127-130.Li J H, Zhou D W, Duan C. Emission prediction of a dual-fuel engine based on back propagation neural network[J]. Machinery Design & Manufacture, 2018(3): 127-130. (in Chinese)
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘佳奇,卢炽华,刘志恩.LOLIMOT模型在CNG发动机NOx排放预测试验中的应用[J].重庆大学学报,2024,47(1):9~20

Copy
Share
Article Metrics
  • Abstract:944
  • PDF: 643
  • HTML: 111
  • Cited by: 0
History
  • Received:December 31,2021
  • Online: January 19,2024
Article QR Code