Effects of environmental parameters on fatigue damage of wind turbine gearbox transmission system
CSTR:
Author:
Affiliation:

1.State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044,P. R. China;2.CSIC Haizhuang Wind Power Company Limited, Chongqing 401122, P. R. China

Fund Project:

Supported by Chongqing Natural Science Foundation (cstc2020jcyj-msxmX0710), and the Fundamental Research Funds for the Central Universities (2020CDJ-LHSS-008, and 2021CDJCGJ008).

  • Article
  • | |
  • Metrics
  • |
  • Reference [40]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In the entire life cycle of a wind turbine, the probability distribution of long-term wind speeds introduces randomness to the dynamic load on the wind turbine gearbox transmission system appear random, thereby affecting the accuracy of fatigue damage prediction. In this paper, a fatigue damage prediction method is proposed for the wind turbine gearbox transmission system with considering the characteristics of the long-term wind speed probability distribution. The approach involves assessing the short-term fatigue damage of gears in the transmission system of wind turbine gearbox based on an OpenFAST-SIMPACK combined simulation model built for high power offshore wind turbines. Subsequently, surrogate model technology is used to reconstruct the mapping relationship between “average wind speed, turbulence intensity, and short-term fatigue damage” enabling the prediction of long-term fatigue damage for the gears. The research results show that the low-speed sun gear in the wind turbine gearbox transmission system is prone to contact fatigue failure. Below the rated wind speed, the short-term fatigue damage of the low-speed sun gear correlates positively with the average wind speed, thereby increasing the uncertainty of long-term fatigue damage and elevating the risk of fatigue failure.

    Reference
    [1] 李垚, 朱才朝, 陶友传, 等. 风电机组可靠性研究现状与发展趋势[J]. 中国机械工程, 2017, 28(9): 1125-1133.Li Y, Zhu C C, Tao Y C, et al. Research status and development tendency of wind turbine reliability[J]. China Mechanical Engineering, 2017, 28(9): 1125-1133. (in Chinese)
    [2] 王磊. 海上风电机组系统动力学建模及仿真分析研究[D]. 重庆: 重庆大学, 2011.Wang L. Study on systematic dynamic model and simulation for offshore wind turbine[D]. Chongqing: Chongqing University, 2011. (in Chinese)
    [3] Dong W B, Xing Y H, Moan T, et al. Time domain-based gear contact fatigue analysis of a wind turbine drivetrain under dynamic conditions[J]. International Journal of Fatigue, 2013, 48: 133-146.
    [4] 向东, 蒋李, 沈银华, 等. 风电齿轮箱在随机风载下的疲劳损伤计算模型[J]. 振动与冲击, 2018, 37(11): 115-123.Xiang D, Jiang L, Shen Y H, et al. Fatigue damage calculation model for wind turbine gearboxes under random wind loads[J]. Journal of Vibration and Shock, 2018, 37(11): 115-123. (in Chinese)
    [5] Nejad A R, Gao Z, Moan T. On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drivetrains[J]. International Journal of Fatigue, 2014, 61: 116-128.
    [6] Nejad A R, Bachynski E E, Kvittem M I, et al. Stochastic dynamic load effect and fatigue damage analysis of drivetrains in land-based and TLP, spar and semi-submersible floating wind turbines[J]. Marine Structures, 2015, 42: 137-153.
    [7] Wang S S, Nejad A R, Moan T. On design, modelling, and analysis of a 10-MW medium-speed drivetrain for offshore wind turbines[J]. Wind Energy, 2020, 23(4): 1099-1117.
    [8] 熊中杰. 随机风速下风力发电机组齿轮箱疲劳断裂寿命研究[D]. 南京: 南京理工大学, 2019.Xiong Z J. Research on fatigue fracture life of wind turbine gearbox under random wind[D]. Nanjing: Nanjing University of Science and Technology, 2019. (in Chinese)
    [9] Heidebrecht A, MacManus D G. Surrogate model of complex non-linear data for preliminary nacelle design[J]. Aerospace Science and Technology, 2019, 84: 399-411.
    [10] Palmer K, Realff M. Metamodeling approach to optimization of steady-state flowsheet simulations: model generation[J]. Chemical Engineering Research and Design, 2002, 80(7): 760-772.
    [11] Jia Z Y, Davis E, Muzzio F J, et al. Predictive modeling for pharmaceutical processes using kriging and response surface[J]. Journal of Pharmaceutical Innovation, 2009, 4(4): 174-186.
    [12] Milovanovi? S, von Sydow L. A high order method for pricing of financial derivatives using radial basis function generated finite differences[J]. Mathematics and Computers in Simulation, 2020, 174: 205-217.
    [13] Murcia J P, Réthoré P E, Dimitrov N, et al. Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates[J]. Renewable Energy, 2018, 119: 910-922.
    [14] Li X A, Zhang W. Probabilistic fatigue evaluation of floating wind turbine using combination of surrogate model and copula model[C]//Proceedings of the AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019: AIAA2019-0247.
    [15] Zhao Y L, Dong S. Probabilistic fatigue surrogate model of bimodal tension process for a semi-submersible platform[J]. Ocean Engineering, 2021, 220: 108501.
    [16] Wilkie D, Galasso C. Impact of climate-change scenarios on offshore wind turbine structural performance[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110323.
    [17] Jonkman B, Jonkman J. FAST v8. 16.00 a-bjj[EB/OL]. 2016-07-16[2021-12-20]. https://openfast.readthedocs.io/en/v3.5.2/_downloads/5f2ddf006568adc9b88d8118dc3f1732/FAST8_README.pdf.
    [18] 陈旭, 朱才朝, 宋朝省, 等. 紧急停机工况下风力发电机系统动态特性分析[J]. 机械工程学报, 2019, 55(5): 82-88.Chen X, Zhu C C, Song C S, et al. Dynamic characteristics analysis of wind turbine under emergency shutdown events[J]. Journal of Mechanical Engineering, 2019, 55(5): 82-88. (in Chinese)
    [19] 陈岩松, 朱才朝, 谭建军, 等. 多工况下兆瓦级海上风电齿轮箱均载性能优化设计[J]. 重庆大学学报, 2022, 45(09): 1-14.Chen Y S, Zhu C C, Tan J J, et al. Optimal design of load sharing performance of megawatt level offshore wind turbine gearbox under multi-operating conditions[J]. Journal of Chongqing University, 2022, 45(09): 1-14.(in Chinese)
    [20] 刘华朝, 朱才朝, 柏厚义. 轮齿修形对兆瓦级风电齿轮箱NVH性能的影响[J]. 振动与冲击, 2016, 35(24): 158-163, 188.Liu H C, Zhu C C, Bai H Y. The effect of gear modification on the NVH characteristics of a megawatt level wind turbine gearbox[J]. Journal of Vibration and Shock, 2016, 35(24): 158-163, 188. (in Chinese)
    [21] International Electrotechnical Commission. Wind turbines - Part 1: design requirements : IEC 61400-1:2005 [S]. IEC, 2006.
    [22] Li H X, Cho H, Sugiyama H, et al. Reliability-based design optimization of wind turbine drivetrain with integrated multibody gear dynamics simulation considering wind load uncertainty[J]. Structural and Multidisciplinary Optimization, 2017, 56(1): 183-201.
    [23] 龚伟俊, 李为相, 张广明. 基于威布尔分布的风速概率分布参数估计方法[J]. 可再生能源, 2011, 29(6): 20-23.Gong W J, Li W X, Zhang G M. The estimation algorithm on the probabilistic distribution parameters of wind speed based on Weibull distribution[J]. Renewable Energy Resources, 2011, 29(6): 20-23. (in Chinese)
    [24] Sklar A. Fonctions de repartition an dimensions et leurs marges[J]. Publ. inst. statist. univ. Paris, 1959, 8: 229-231.
    [25] 涂志斌, 黄铭枫, 楼文娟, 等. 基于Copula函数的风浪多方向极限状态曲线[J]. 振动与冲击, 2021, 40(14): 1-9, 46.Tu Z B, Huang M F, Lou W J, et al. Dimensional environmental contour lines of the wind and wave based on Copula functions[J]. Journal of Vibration and Shock, 2021, 40(14): 1-9, 46. (in Chinese)
    [26] 侯亚楠. Copula函数的估计及其应用[D]. 武汉: 华中科技大学, 2013.Hou Y N. The estimation and application of copula function[D]. Wuhan: Huazhong University of Science and Technology, 2013. (in Chinese)
    [27] Khowaja K, Shcherbatyy M, H?rdle W K. Surrogate models for optimization of dynamical systems[EB/OL]. 2021: arXiv: 2101.10189. https://arxiv.org/abs/2101.10189.pdf.
    [28] Martini M, Guanche R, Armesto J A, et al. Met-ocean conditions influence on floating offshore wind farms power production[J]. Wind Energy, 2016, 19(3): 399-420.
    [29] 周金宇, 谢里阳, 韩文钦, 等. 基于Nataf变换的载荷相关系统风险预测方法[J]. 机械工程学报, 2009, 45(8): 137-141.Zhou J Y, Xie L Y, Han W Q,et al. Method for syetem risk prediction with load dependency based on nataf transformation[J]. Journal of Mechanical Engineering, 2009, 45(8): 137-141. (in Chinese)
    [30] 张立波, 程浩忠, 曾平良, 等. 基于Nataf逆变换的概率潮流三点估计法[J]. 电工技术学报, 2016, 31(6): 187-194.Zhang L B, Cheng H Z, Zeng P L, et al. A three-point estimate method for solving probabilistic load flow based on inverse Nataf transformation[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 187-194. (in Chinese)
    [31] International Organization for Standardization. Calculation of load capacity of spur and helical gears - Part 6: calculation of service life under variable load: ISO 6336-6:2006 [S]. Switzerland: International Organization for Standardization, 2006.
    [32] International Organization for Standardization. Calculation of load capacity of spur and helical gears - Part 2: calculation of surface durability (pitting): ISO 6336-2:2006 [S]. Switzerland: International Organization for Standardization, 2006.
    [33] International Organization for Standardization. Calculation of load capacity of spur and helical gears - Part 3: calculation of tooth bending strength: ISO 6336-3:2006 [S]. Switzerland: International Organization for Standardization, 2006.
    [34] Miner M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3): A159-A164.
    [35] International Organization for Standardization. Calculation of load capacity of spur and helical gears - Part 5: strength and quality of materials: ISO 6336-5:2003 [S]. Switzerland: International Organization for Standardization, 2003.
    [36] 龙腾, 刘建, Wang G G, 等. 基于计算试验设计与代理模型的飞行器近似优化策略探讨[J]. 机械工程学报, 2016, 52(14): 79-105.Long T, Liu J, Wang G G, et al. Discuss on approximate optimization strategies using design of computer experiments and metamodels for flight vehicle design[J]. Journal of Mechanical Engineering, 2016, 52(14): 79-105. (in Chinese)
    [37] Okpokparoro S, Sriramula S. Uncertainty modeling in reliability analysis of floating wind turbine support structures[J]. Renewable Energy, 2021, 165: 88-108.
    [38] Rashki M, Azarkish H, Rostamian M, et al. Classification correction of polynomial response surface methods for accurate reliability estimation[J]. Structural Safety, 2019, 81: 101869.
    [39] Wang H, Li W B, Qian Z H, et al. Reconstruction of wind pressure fields on cooling towers by radial basis function and comparisons with other methods[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 208: 104450.
    [40] Bhosekar A, Ierapetritou M. Advances in surrogate based modeling, feasibility analysis, and optimization: a review[J]. Computers & Chemical Engineering, 2018, 108: 250-267.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

伍源,朱才朝,谭建军,宋朝省,张会阳.环境参数对风电齿轮箱传动系统疲劳损伤的影响[J].重庆大学学报,2024,47(3):132~144

Copy
Share
Article Metrics
  • Abstract:195
  • PDF: 503
  • HTML: 62
  • Cited by: 0
History
  • Received:January 23,2022
  • Online: April 02,2024
Article QR Code