Simulation of energy-saving control strategy for independent metering electro-hydraulic system based on hydranlic-resistance full-bridge network
CSTR:
Author:
Affiliation:

1.Advanced Manufacturing School, Nanchang University, Nanchang 330031, P. R. China;2.State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 230027, P. R. China

Clc Number:

TH137

Fund Project:

Supported by National Natural Science Foundation of China (52175050), Outstanding Youth Science Foundation (51922093), and Scientific Research Fund of Zhejiang Provincial Education Department(Y202148352).

  • Article
  • | |
  • Metrics
  • |
  • Reference [17]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To address issues such as high throttle loss, high energy consumption, and low efficiency in traditional electro-hydraulic control systems, a novel electro-hydraulic control system characterized by independent metering is introduced in this study. This system incorporates a full-bridge hydraulic resistance network, and its energy-saving control strategy is extensively investigated under typical four-quadrant load. Comprising five two-position two-way proportional valves, the hydraulic-resistance full-bridge electro-hydraulic system is categorized into three control modes: a traditional three-position four-way control mode, an independent metering control mode, and a load sensitive control mode. In the traditional mode, the opening control of the two load ports mimics three-position and four-way inlet and outlet coupling. In the independent metering mode, one cavity regulates the flow, while the other cavity controls the full opening of the valve port. The load-sensitive mode ensures a fixed pump outlet pressure higher than the intake cavity pressure, achieving load-sensitive functionality. Additionally, a flow regeneration circuit is used for energy-saving control across all three modes. Results of combined simulation using AMESim+MAT2 show that compared with the traditional three-position four-way valve mode, the three-position four-way flow regeneration mode, the independent metering flow regeneration mode, and the load sensitive mode can achieve energy savings of 43.38%, 65.27%, 77.91% and 83.58%, respectively.

    Reference
    [1] Semini C, Barasuol V, Goldsmith J, et al. Design of the hydraulically actuated, torque-controlled quadruped robot HyQ2Max[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2): 635-646.
    [2] Raibert M, Blankespoor K, Nelson G, et al. BigDog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41(2): 10822-10825.
    [3] 柴汇, 荣学文, 唐兴鹏, 等. 基于能量规划的崎岖地面四足机器人平面跳跃控制[J]. 吉林大学学报(工学版), 2017, 47(2): 557-566.Chai H, Rong X W, Tang X P, et al. Gait based planar hopping control of quadruped robot on uneven terrain with energy planning[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(2): 557-566.(in Chinese)
    [4] Li L P, Xie L, Luo X, et al. Compliance control using hydraulic heavy-duty manipulator[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 1193-1201.
    [5] Ding R Q, Zhang J H, Xu B, et al. Programmable hydraulic control technique in construction machinery: status, challenges and countermeasures[J]. Automation in Construction, 2018, 95: 172-192.
    [6] 赵蕾, 陈青, 权龙. 阀芯运动状态滑阀内部流场的可视化分析[J]. 农业机械学报, 2008, 39(11): 142-145, 155.Zhao L, Chen Q, Quan L. Visualization analysis of the flow field in a moving spool valve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(11): 142-145, 155.(in Chinese)
    [7] Jansson A, Palmberg J O. Separate controls of meter-in and meter-out orifices in mobile hyraulic systems[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1990: 377-383.
    [8] Yao B. High performance adaptive robust control of nonlinear systems: a general framework and new schemes[C]//Proceedings of the 36th IEEE Conference on Decision and Control. San Diego, CA, USA. IEEE, 1997: 2489-2494.
    [9] Yao B, DeBoer C. Energy-saving adaptive robust motion control of single-rod hydraulic cylinders with programmable valves[C]//Proceedings of the 2002 American Control Conference. Anchorage, AK, USA. IEEE, 2002: 4819-4824.
    [10] Bobo H L, Chen Z, Yao B. Precision motion control of a servomotor-pump direct-drive electrohydraulic system with a nonlinear pump flow mapping[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10): 8638-8648.
    [11] Lyu L T, Chen Z, Yao B. Energy saving motion control of independent metering valves and pump combined hydraulic system[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(5): 1909-1920.
    [12] 徐兵, 丁孺琦, 张军辉. 基于泵阀联合控制的负载口独立系统试验研究[J]. 浙江大学学报(工学版), 2015, 49(1): 93-101.Xu B, Ding R Q, Zhang J H. Experiment research on individual metering systems of mobile machinery based on coordinate control of pump and valves[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(1): 93-101.(in Chinese)
    [13] 程敏, 于今, 丁孺琦, 等. 基于流量前馈与压力反馈复合控制的电液负载敏感系统[J]. 机械工程学报, 2018, 54(20): 262-270.Cheng M, Yu J, Ding R Q, et al. Electrohydraulic load sensing system via compound control of flow feedforward and pressure feedback[J]. Journal of Mechanical Engineering, 2018, 54(20): 262-270.(in Chinese)
    [14] 黄泽平, 娄贺, 王纪森. 基于负载敏感技术的新型EHA设计与仿真分析[J]. 液压气动与密封, 2012, 32(7): 31-33.Huang Z P, Lou H, Wang J S. Design and simulation analysis of a new type EHA based on load-sensing technology[J]. Hydraulics Pneumatics & Seals, 2012, 32(7): 31-33.(in Chinese)
    [15] 袁士豪, 殷晨波, 刘世豪. 机械负载敏感定量泵系统性能分析[J]. 农业工程学报, 2013, 29(13): 38-45.Yuan S H, Yin C B, Liu S H. Performance analysis of machinery load sensitive quantitative pump system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(13): 38-45.(in Chinese)
    [16] 孙博林, 程敏, 丁孺琦. 带流量前馈与工作腔压力反馈的电液负载敏感系统节能方法[J]. 液压与气动, 2021, 45(10): 1-7.Sun B L, Cheng M, Ding R Q. Energy saving method for electro-hydraulic load-sensing systems with flow feed-forward and working chamber pressure feedback[J]. Chinese Hydraulics & Pneumatics, 2021, 45(10): 1-7.(in Chinese)
    [17] 丁孺琦, 江来, 李刚, 等. 电液负载敏感负载口独立多模式切换控制能效研究[J]. 农业机械学报, 2021, 52(12): 433-442.Ding R Q, Jiang L, Li G, et al. Energy efficiency of electro-hydraulic load sensing independent metering multi-mode switching control system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 433-442.(in Chinese)
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘国平,熊剑峰,陆振宇,纵怀志,张军辉,曹塘茂,吴健鹏.液阻全桥网络负载口独立电液系统节能控制策略仿真[J].重庆大学学报,2024,47(5):13~23

Copy
Share
Article Metrics
  • Abstract:795
  • PDF: 493
  • HTML: 123
  • Cited by: 0
History
  • Received:April 29,2022
  • Online: June 11,2024
Article QR Code