Simulation of energy-saving control strategy for independent metering electro-hydraulic system based on hydranlic-resistance full-bridge network
CSTR:
Author:
Affiliation:

1.Advanced Manufacturing School, Nanchang University, Nanchang 330031, P. R. China;2.State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 230027, P. R. China

Clc Number:

TH137

Fund Project:

Supported by National Natural Science Foundation of China (52175050), Outstanding Youth Science Foundation (51922093), and Scientific Research Fund of Zhejiang Provincial Education Department(Y202148352).

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To address issues such as high throttle loss, high energy consumption, and low efficiency in traditional electro-hydraulic control systems, a novel electro-hydraulic control system characterized by independent metering is introduced in this study. This system incorporates a full-bridge hydraulic resistance network, and its energy-saving control strategy is extensively investigated under typical four-quadrant load. Comprising five two-position two-way proportional valves, the hydraulic-resistance full-bridge electro-hydraulic system is categorized into three control modes: a traditional three-position four-way control mode, an independent metering control mode, and a load sensitive control mode. In the traditional mode, the opening control of the two load ports mimics three-position and four-way inlet and outlet coupling. In the independent metering mode, one cavity regulates the flow, while the other cavity controls the full opening of the valve port. The load-sensitive mode ensures a fixed pump outlet pressure higher than the intake cavity pressure, achieving load-sensitive functionality. Additionally, a flow regeneration circuit is used for energy-saving control across all three modes. Results of combined simulation using AMESim+MAT2 show that compared with the traditional three-position four-way valve mode, the three-position four-way flow regeneration mode, the independent metering flow regeneration mode, and the load sensitive mode can achieve energy savings of 43.38%, 65.27%, 77.91% and 83.58%, respectively.

    Reference
    Related
    Cited by
Get Citation

刘国平,熊剑峰,陆振宇,纵怀志,张军辉,曹塘茂,吴健鹏.液阻全桥网络负载口独立电液系统节能控制策略仿真[J].重庆大学学报,2024,47(5):13~23

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 29,2022
  • Revised:
  • Adopted:
  • Online: June 11,2024
  • Published:
Article QR Code