Dual-stage feature selection for short-term load forecasting based on mRMR-IPSO
CSTR:
Author:
Affiliation:

1.State Grid Hubei Extra High Voltage Company, Wuhan 430000, P. R. China;2.State Grid Zhejiang Electric Power Co., Ltd. Huzhou Power Supply Company, Huzhou 313000, Zhejiang, P. R. China

Clc Number:

TM715

Fund Project:

Supported by State Grid Hubei Electric Power Company Technology Project(521520220006).

  • Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Power load exhibits characteristics of temporal and spatial variation and is affected by various factors. In short-term load forecasting, an excessive number of input features can cause dimensionality disasters and lead to poor model prediction performance. Therefore, selecting a reasonable input feature set is crucial. This article proposes a novel feature selection method for short-term load forecasting–the mRMR-IPSO two-stage method. The max-relevance and min-redundancy (mRMR) criterion is employed to rank the original features, considering both the correlation between input and output features and the redundancy among input features. This process filters out less impactful features ranked lower and initially selects these significantly influencing the prediction. Then, an improved particle swarm optimization (IPSO) algorithm-based search strategy is adopted. The prediction accuracy of the LightGBM model is used as the fitness function during the search, facilitating the selection of primary feature subsets and obtaining optimal feature subsets. Calculation examples show that the proposed method improves prediction accuracy while substantially reducing the original feature set.

    Reference
    [1] 林涵, 郝正航, 郭家鹏, 等. 基于TCA-CNN-LSTM的短期负荷预测研究[J].电测与仪表, 2023, 60(8):73-80.Lin Han, Hao Z H, Guo J P, et al. Research on short-term load forecasting based on TCA-CNN-LSTM[J]. Electrical Measurement & Instrumentation, 2023, 60(8):73-80. (in Chinese)
    [2] 丁坚勇, 朱炳翔, 田世明, 等. 改进F-score特征选择的MPSO-BP神经网络短期负荷预测[J]. 电测与仪表, 2018, 55(15): 36-41.Ding J Y, Zhu B X, Tian S M, et al. Short-term load forecasting of MPSO-BP neural network based on improved F-score feature selection[J]. Electrical Measurement & Instrumentation, 2018, 55(15): 36-41. (in Chinese)
    [3] 张振中, 郭傅傲, 刘大明, 等. 基于最大互信息系数和小波分解的多模型集成短期负荷预测[J]. 计算机应用与软件, 2021, 38(5): 82-87.Zhang Z Z, Guo F A, Liu D M, et al. Multi-model integrated short-term load prediction based on maximum mutual information coefficient and wavelet decomposition[J]. Computer Applications and Software, 2021, 38(5): 82-87. (in Chinese)
    [4] 徐先峰, 赵依, 刘状壮, 等. 用于短期电力负荷预测的日负荷特性分类及特征集重构策略[J]. 电网技术, 2022,46(4):1548-1556.Xu X F, Zhao Y, Liu Z Z, et al. Daily load characteristic classification and feature set reconstruction strategy for short-term power load forecasting [J]. Power System Technology, 2022,46(4):1548-1556. (in Chinese)
    [5] 谷云东, 刘浩. 基于最优特征组合改进极限梯度提升的负荷预测[J]. 计算机应用研究, 2021, 38(9): 2767-2772.Gu Y D, Liu H. Load forecasting based on optimal feature combination improved XGBoost[J]. Application Research of Computers, 2021, 38(9): 2767-2772. (in Chinese)
    [6] 刘倩倩, 刘钰山, 温烨婷, 等. 基于PCC-LSTM模型的短期负荷预测方法[J]. 北京航空航天大学学报, 2022, 48(12): 2529-2536.Liu Q Q, Liu Y S, Wen Y T, et al. Short-term load forecasting method based on PCC-LSTM model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2529-2536. (in Chinese)
    [7] 杨秀, 陈斌超, 朱兰, 等. 基于相关性分析和长短期记忆网络分位数回归的短期公共楼宇负荷概率密度预测[J]. 电网技术, 2019, 43(9): 3061-3071.Yang X, Chen B C, Zhu L, et al. Short-term public building load probability density prediction based on correlation analysis and long-and short-term memory network quantile regression[J]. Power System Technology, 2019, 43(9): 3061-3071. (in Chinese)
    [8] Abedinia O, Amjady N, Zareipour H. A new feature selection technique for load and price forecast of electrical power systems[J]. IEEE Transactions on Power Systems, 2017, 32(1): 62-74.
    [9] 严雪颖, 秦川, 鞠平, 等. 负荷功率模型的最优特征选择研究[J]. 电力工程技术, 2021, 40(3): 84-91.Yan X Y, Qin C, Ju P, et al. Optimal feature selection of load power models [J]. Electric Power Engineering Technology, 2021, 40(3): 84-91.(in Chinese)
    [10] Jiang P, Liu F, Song Y L. A hybrid forecasting model based on date-framework strategy and improved feature selection technology for short-term load forecasting[J]. Energy, 2017, 119: 694-709.
    [11] 孙超, 吕奇, 朱思曈, 等. 基于双层XGBoost算法考虑多特征影响的超短期电力负荷预测[J]. 高电压技术, 2021, 47(8): 2885-2898.Sun C, Lü Q, Zhu S T, et al. Ultra-short-term power load forecasting based on two-layer XGBoost algorithm considering the influence of multiple features[J]. High Voltage Engineering, 2021, 47(8): 2885-2898. (in Chinese)
    [12] 朱凌建, 荀子涵, 王裕鑫, 等. 基于CNN-Bi LSTM的短期电力负荷预测[J]. 电网技术, 2021, 45(11): 4532-4539.Zhu L J, Xun Z H, Wang Y X, et al. Short-term power load forecasting based on CNN-BiLSTM[J]. Power System Technology, 2021, 45(11): 4532-4539. (in Chinese)
    [13] Hu Z Y, Bao Y K, Xiong T, et al. Hybrid filter-wrapper feature selection for short-term load forecasting[J]. Engineering Applications of Artificial Intelligence, 2015, 40: 17-27.
    [14] 郑睿程, 顾洁, 金之俭, 等. 数据驱动与预测误差驱动融合的短期负荷预测输入变量选择方法研究[J]. 中国电机工程学报, 2020, 40(2): 487-500.Zheng R C, Gu J, Jin Z J, et al. Research on short-term load forecasting variable selection based on fusion of data driven method and forecast error driven method[J]. Proceedings of the CSEE, 2020, 40(2): 487-500. (in Chinese)
    [15] 李扬, 顾雪平. 基于改进最大相关最小冗余判据的暂态稳定评估特征选择[J]. 中国电机工程学报, 2013, 33(34): 179-186, 27.Li Y, Gu X P. Feature selection for transient stability assessment based on improved maximal relevance and minimal redundancy criterion[J]. Proceedings of the CSEE, 2013, 33(34): 179-186, 27. (in Chinese)
    [16] Peng H C, Long F H, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and Min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238.
    [17] Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks. IEEE, 2002: 1942-1948.
    [18] Yadav S, Ekbal A, Saha S. Feature selection for entity extraction from multiple biomedical corpora: a PSO-based approach[J]. Soft Computing, 2018, 22(20): 6881-6904.
    [19] Zhang Y Y, Zhu C F, Wang Q R. LightGBM-based model for metro passenger volume forecasting[J]. IET Intelligent Transport Systems, 2020, 14(13): 1815-1823.
    [20] 王生亮, 刘根友. 一种非线性动态自适应惯性权重PSO算法[J]. 计算机仿真, 2021, 38(4): 249-253, 451.Wang S L, Liu G Y. A nonlinear dynamic adaptive inertial weight particle swarm optimization[J]. Computer Simulation, 2021, 38(4): 249-253, 451. (in Chinese)
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

焦龄霄,周凯,张子熙,韩飞,时伟君,洪叶,罗朝丰.基于mRMR-IPSO的短期负荷预测双阶段特征选择[J].重庆大学学报,2024,47(5):98~109

Copy
Share
Article Metrics
  • Abstract:137
  • PDF: 638
  • HTML: 52
  • Cited by: 0
History
  • Received:March 20,2023
  • Online: June 11,2024
Article QR Code