Grading evaluation method of water seepage disease of stone cultural relics
Author:
Affiliation:

State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan430071, P. R. China

Fund Project:

Supported by National Key R&D Program of China (2021YFC1523400).

  • Article
  • | |
  • Metrics
  • |
  • Reference [44]
  • |
  • Related [3]
  • | | |
  • Comments
    Abstract:

    This study addresses various types of water seepage diseases affecting the Dazu Beishan Rock Carvings in Chongqing, proposing grading evaluation methods and criteria for these water-related diseases. Utilizing the cubic law of flow-equivalent opening, critical conditions for grading drip/flow water diseases under different hydraulic gradients were established. The content and film thickness of bound water in the purple-red and gray-white sandstones of Dazu were evaluated by means of thermo-gravimetric analysis, leading to the formulation of immersion disease grading based on immersed area. Hygroscopic dynamic characteristics of the sandstones were examined under varying relative humidity(RH) through hygroscopic testing, and water diffusion coefficients were calculated based on Fick’s law. Wall hanging water disease conditions were defined, and grading standards taking into account contact angle were proposed. Additionally, the CIE-L*a*b* chromaticity coordinates of the sandstones from Dazu were measured in both dry and wet states, establishing wet/humid disease grading criteria based on the color difference value ΔEn corresponding to different saturation levels(water content).

    Reference
    [1] Zhang J K, Li Z, Li L, et al. Study on weathering mechanism of sandstone statues in southwest China: example from the sandstone of niche of sakyamuni entering nirvana at Dazu rock carvings[J]. Natural Hazards, 2021, 108(1): 775-797.
    [2] Li Z M, Wang L L, Chen H L, et al. Degradation of emerald green: scientific studies on multi-polychrome Vairocana Statue in Dazu Rock Carvings, Chongqing, China[J]. Heritage Science, 2020, 8(1): 64.
    [3] Yan S J, Xie N, Liu J H, et al. Salt weathering of sandstone under dehydration and moisture absorption cycles: an experimental study on the sandstone from Dazu rock carvings[J]. Earth Surface Processes and Landforms, 2022, 47(4): 977-993.
    [4] Meng Z G, Wang F N, Qi G, et al. Stability monitoring and deformation laws of the Yuanjue cave in the influence zone of the unloading zone[EB/OL].(2021-08-02)[2024-10-23].https://doi.org/10.1155/2021/6696030.
    [5] 方芳, 方云, 燕学锋, 等. 重庆大足石刻千手观音造像区地下水渗流机制分析[J]. 文物保护与考古科学, 2009, 21(4): 1-4.Fang F, Fang Y, Yan X F, et al. Groundwater seepage mechanism in the area of the Thousand Armed Guan Yin at Dazu Rock carvings in Chongqing[J]. Sciences of Conservation and Archaeology, 2009, 21(4): 1-4.(in Chinese)
    [6] 王金华, 陈嘉琦, 王乐乐, 等. 我国石窟寺病害及其类型研究[J]. 东南文化, 2022(4): 25-32.Wang J H, Chen J Q, Wang L L, et al. Deterioration patterns of grotto temples in China[J]. Southeast Culture, 2022(4): 25-32.(in Chinese)
    [7] 汪东云, 付林森, 姚金石, 等. 北山石窟岩体风化现状及控制因素[J]. 重庆建筑工程学院学报, 1993, 15(1): 81-86.Wang D Y, Fu L S, Yao J S, et al. Present situation and controlling factors of rock weathering in Beishan Grottoes[J]. Journal of Chongqing Architecture University, 1993, 15(1): 81-86.(in Chinese)
    [8] 汪东云, 张赞勋, 付林森, 等. 北山石窟渗水特征及其对造象岩体的破坏作用[J]. 水文地质工程地质, 1993, 20(6): 39-44.Wang D Y, Zhang Z X, Fu L S, et al. The characteristics of water seepage and its destructive effect to the statue rockmass in Beishan Grottoes[J]. Hydrogeology and Engineering Geology, 1993, 20(6): 39-44.(in Chinese)
    [9] 张兵峰, 蒋思维. 重庆大足石刻大佛湾渗水病害初探[J]. 中国文物科学研究, 2016(1): 68-71.Zhang B F, Jiang S W. Preliminary exploration of water seepage disease on Big Buddha Bay of Dazu Rock Carvings[J]. China Cultural Heritage Scientific Research, 2016(1): 68-71.(in Chinese)
    [10] 徐程. 小开度裂隙注浆封堵扩散规律及控制参数研究[D]. 济南: 山东大学, 2016.Xu C. Study on diffusion law and control parameters of grouting plugging in small opening cracks[D]. Jinan: Shandong University, 2016. (in Chinese)
    [11] Romm E S. Flow characteristics of fractured rocks[M]. Moscow: Nedra Publishing House, 1966.
    [12] Lomize G M. Flow in fractured rocks[M]. Moscow: Gosemergoizdat, 1951.
    [13] Louis C. Rock hydraulics[M]//Rock Mechanics. Vienna: Springer, 1972: 299-387.
    [14] Amadei B, Illangasekare T. A mathematical model for flow and solute transport in non-homogeneous rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 719-731.
    [15] 速宝玉, 詹美礼, 赵坚. 仿天然岩体裂隙渗流的实验研究[J]. 岩土工程学报, 1995, 17(5): 19-24.Su B Y, Zhan M L, Zhao J. Study on fracture seepage in the imitative nature roke[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 19-24.(in Chinese)
    [16] Wilson C R, Witherspoon P A. Steady state flow in rigid networks of fractures[J]. Water Resources Research, 1974, 10(2): 328-335.
    [17] Barton N, Bandis S, Strength Bakhtar K., deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1985,22 (3):121-140.
    [18] K I. Fundamental studies of fluid flow through a single fracture[D]. Berkely: University of California, 1976.
    [19] Walsh J B. Effect of pore pressure and confining pressure on fracture permeability[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(5): 429-435.
    [20] 周海涛. 裂隙岩体承压渗流演化特征及其水力学机制研究[D]. 徐州: 中国矿业大学, 2017.Zhou H T. Study on evolution characteristics and hydraulic mechanism of confined seepage in fractured rock mass[D]. Xuzhou: China University of Mining and Technology, 2017. (in Chinese)
    [21] Lee C H. Flow in fractured rock[D]. Tucson: University of Arizona, 1990.
    [22] 甘磊, 马洪影, 沈振中. 下凹形态裂隙面粗糙程度表征及立方定律修正系数拟合[J]. 水利学报, 2021, 52(4): 420-431.Gan L, Ma H Y, Shen Z Z. Roughness characterization of concave fracture surface and coefficient fitting of modified cubic law[J]. Journal of Hydraulic Engineering, 2021, 52(4): 420-431.(in Chinese)
    [23] 刘佳婷, 付昱凯, 李同录, 等. 黄土与其矿物颗粒表面水膜类型及其定量表征[J]. 水文地质工程地质, 2022, 49(6): 105-113.Liu J T, Fu Y K, Li T L, et al. Types of water film on the surface of loess and related mineral particles and their quantitative characterization[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 105-113.(in Chinese)
    [24] 曾召田, 刘兆强, 莫红艳, 等. 黏性土中结合水测定及影响因素分析[J]. 地震工程学报, 2023, 45(3): 625-633.Zeng Z T, Liu Z Q, Mo H Y, et al. Determination of bound water in clay soil and analysis of its influencing factors[J]. China Earthquake Engineering Journal, 2023, 45(3): 625-633.(in Chinese)
    [25] 王铁行, 李彦龙, 苏立君. 黄土表面吸附结合水的类型和界限划分[J]. 岩土工程学报, 2014, 36(5): 942-948.Wang T H, Li Y L, Su L J. Types and boundaries of bound water on loess particle surface[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 942-948.(in Chinese)
    [26] 李燕. 麦积山石窟水汽凝结机理及防治措施研究[D]. 兰州: 兰州大学, 2020.Li Y. Study on water vapor condensation mechanism and prevention measures in Maijishan Grottoes[D]. Lanzhou: Lanzhou University, 2020. (in Chinese)
    [27] Sheng W, Qiang Z. Atmospheric physical characteristics of dew formation in semi-arid in Loess Plateau[J]. Acta Physica Sinica, 2011, 60(5): 059203.
    [28] Camuffo D. Microclimate, air and temperature[M]//Microclimate for Cultural Heritage. Amsterdam: Elsevier, 2014: 3-47.
    [29] 陈翠琴. 凝结水的形成及变化规律[J]. 安徽农业科学, 2015, 43(31): 30-32.Chen C Q. Formation of condensate and change rule[J]. Journal of Anhui Agricultural Sciences, 2015, 43(31): 30-32.(in Chinese)
    [30] 万力, 曹文炳, 王旭升, 等. 云冈石窟水汽转化特征的初步研究[J]. 工程勘察, 2012, 40(11): 6-11.Wan L, Cao W B, Wang X S, et al. Preliminary investigation on water-vapor transfer in Yungang Grottoes[J]. Geotechnical Investigation & Surveying, 2012, 40(11): 6-11.(in Chinese)
    [31] 黄继忠, 万力, 彭涛, 等. 云冈石窟水分来源探查工程及若干成果[J]. 工程勘察, 2012, 40(11): 1-5, 11.Huang J Z, Wan L, Peng T, et al. Survey on water sources in Yungang Grottoes and some results[J]. Geotechnical Investigation & Surveying, 2012, 40(11): 1-5, 11.(in Chinese)
    [32] 欧阳恺皋, 蒋小伟, 马策, 等. 岩体表层凝结水的形成与转化规律: 对岩石风化水分来源的指示意义[J]. 地学前缘, 2023, 30(2): 506-513.Ouyang K G, Jiang X W, Ma C, et al. Formation and transformation of condensate water inside rocks: insight into source of rock moisture affecting weathering[J]. Earth Science Frontiers, 2023, 30(2): 506-513.(in Chinese)
    [33] 郑龙, 伍健东, 周兴求, 等. 温度和相对湿度对污泥低温干燥速率的影响[J]. 环境工程学报, 2016, 10(2): 922-928.Zheng L, Wu J D, Zhou X Q, et al. Effects of temperature and relative humidity on drying rate of sludge at low temperature[J]. Chinese Journal of Environmental Engineering, 2016, 10(2): 922-928.(in Chinese)
    [34] 吴婧婧. 温度和湿度对复合材料螺栓连接强度影响研究[D]. 南京: 南京航空航天大学, 2018.Wu J J. Study on the influence of temperature and humidity on the strength of composite bolt connection[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [35] Akbar S, Zhang T. Moisture diffusion in carbon/epoxy composite and the effect of cyclic hygrothermal fluctuations: characterization by dynamic mechanical analysis (DMA) and interlaminar shear strength (ILSS)[J]. The Journal of Adhesion, 2008, 84(7): 585-600.
    [36] 孟江燕, 王云英, 向东东, 等. 湿热环境对T700/5429弯曲和面内压缩强度的影响[J]. 宇航材料工艺, 2012, 42(5): 30-33.Meng J Y, Wang Y Y, Xiang D D, et al. Effect of hydrothermal environment on flexural and in-plane compressive strength of T700/5429[J]. Aerospace Materials & Technology, 2012, 42(5): 30-33.(in Chinese)
    [37] Wan Y Z, Wang Y L, Luo H L, et al. Moisture absorption behavior of C3D/EP composite and effect of external stress[J]. Materials Science and Engineering: A, 2002, 326(2): 324-329.
    [38] Young J F. Humidity control in the laboratory using salt solutions-a review[J]. Journal of Applied Chemistry, 1967, 17(9): 241-245.
    [39] Zschaeck G, Frank T, Burns A D. CFD modelling and validation of wall condensation in the presence of non-condensable gases[J]. Nuclear Engineering and Design, 2014, 279: 137-146.
    [40] 张悦, 黄继忠. 红外技术在文物科学保护中的应用[J]. 自然杂志, 2021, 43(3): 217-224.Zhang Y, Huang J Z. Application of infrared technique for scientific conservation of cultural relics[J]. Chinese Journal of Nature, 2021, 43(3): 217-224.(in Chinese)
    [41] 张慧慧. 红外热成像法检测岩石渗水病害的实验研究[J]. 齐齐哈尔大学学报(自然科学版), 2014, 30(1): 71-74.Zhang H H. The experimental study of infrared imaging detection on water-permeation of rock[J]. Journal of Qiqihar University (Natural Science Edition), 2014, 30(1): 71-74.(in Chinese)
    [42] 肖宽怀, 王绪本. 微电极高密度电法探测在文物保护中的应用研究[J]. 物探化探计算技术, 2013, 35(1): 10-17.Xiao K H, Wang X B. The research about the application of relic protection with the method of microelectrode detection of highdensity electrical[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2013, 35(1): 10-17.(in Chinese)
    [43] Sass O, Viles H A. Wetting and drying of masonry walls: 2D-resistivity monitoring of driving rain experiments on historic stonework in Oxford, UK[J]. Journal of Applied Geophysics, 2010, 70(1): 72-83.
    [44] 仉文岗, 王硕, 刘汉龙, 等. 重庆老鼓楼衙署遗址强度劣化规律及渗水病害防治对策[J]. 土木与环境工程学报(中英文), 2023, 45(5): 26-36.Zhang W G, Wang S, Liu H L, et al. Strength deterioration pattern and anti-seepage measures of the Old Drum Tower Yamen site in Chongqing[J]. Journal of Civil and Environmental Engineering, 2023, 45(5): 26-36.(in Chinese)
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王军霞,任伟中.石质文物渗水病害分级评估方法分析[J].重庆大学学报,2024,47(10):99~109

Copy
Share
Article Metrics
  • Abstract:1129
  • PDF: 291
  • HTML: 139
  • Cited by: 0
History
  • Received:December 25,2023
  • Online: November 14,2024
Article QR Code