Dynamic response mechanism of radar wave propagation characteristics to fracture seepage in sandstone
Author:
Affiliation:

College of Geoexploration Science and Technology, Jilin University, Changchun130000, P. R. China

Fund Project:

Supported by the National Key Reserach and Development Program of China(2021YFC1523401),Jilin Provincial Department of Education Outstanding Youth Project(JJKH20241253KJ).

  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Fracture-related deterioration is common in grottoe temple rock masses, with water seepage exacerbating the issue, complicating cultural relic preservation. This study explores the dynamic response mechanism of radar wave propagation to fracture seepage in sandstone. Firstly, a transient model, based on physical parameters and Richards equation, is established. Then, the finite difference time domain method is used to numerically simulate the fractured seepage in sandstone with ground-penetrating radar(GPR). Finally, Hilbert transform is used to extract the instantaneous attributes and analyze the radar wave field responses under different seepage durations. Simulation of sandstone fracture seepage reveals that fracture seepage increases the dielectric constant of seepage area, enhances radar wave scattering in this area, and causes the instantaneous amplitude of the radar wave scattering to increase with the increase of water saturation. The reselts provide an important theoretical support for GPR in detecting micro-seepage fractures in sandstone.

    Reference
    [1] 黄继忠, 王金华, 高峰, 等. 砂岩类石窟寺保护新进展: 以云冈石窟保护研究新成果为例[J]. 东南文化, 2018(1): 15-19.Huang J Z, Wang J H, Gao F, et al. Recent progresses in sandstone cave temples conservation: a case study of Yungang Grottoes[J]. Southeast Culture, 2018(1): 15-19.(in Chinese)
    [2] 赵勇, 曾昭发, 李静, 等. 地球物理探测技术在石窟寺裂隙渗流中的应用现状及展望[J]. 地球物理学进展, 2022, 37(2): 928-937.Zhao Y, Zeng Z F, Li J, et al. Application status and prospect of geophysical detection technology in fracture seepage of grottoes[J]. Progress in Geophysics, 2022, 37(2): 928-937.(in Chinese)
    [3] Arosio D. Rock fracture characterization with GPR by means of deterministic deconvolution[J]. Journal of Applied Geophysics, 2016, 126: 27-34.
    [4] Daniels D J. A review of GPR for landmine detection[J]. Sensing and Imaging: an International Journal, 2006, 7(3): 90-123.
    [5] 曾昭发, 刘四新, 王者江, 等. 探地雷达方法原理及应用[M]. 北京: 科学出版社, 2006.Zeng Z F, Liu S X, Wang Z J, et al. Principle and application of ground penetrating radar method[M]. Beijing: Science Press, 2006. (in Chinese)
    [6] Annan A P, Davis J L, Gendzwill D. Radar sounding in potash mines, Saskatchewan, Canada[J]. Geophysics, 1988, 53(12): 1556-1564.
    [7] Zhou L J, Ouyang S, Liao G S, et al. Width estimation of a subsurface water-filled crack using internal multiple reflections from electromagnetic scattering model of a cylinder[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(10): 1034-1048.
    [8] Vickers R S , Dolphin L T. A communication on an archaeological radar experiment at Chaco Canyon, New Mexico[J]. Masca Newsletter, 1975, 11(1): 6-8.
    [9] Persico R, Ciminale M, Matera L. A new reconfigurable stepped frequency GPR system, possibilities and issues; applications to two different Cultural Heritage Resources[J]. Near Surface Geophysics, 2014, 12(6): 793-801.
    [10] 方云, 翟国林, 乔梁. 探地雷达探测技术在奉先寺保护工程中的应用[J]. 物探与化探, 2014, 38(4): 815-819.Fang Y, Zhai G L, Qiao L. The application of ground penetrating radar technology to the protection engineering of Fengxian temple[J]. Geophysical and Geochemical Exploration, 2014, 38(4): 815-819.(in Chinese)
    [11] Tsoflias G, Baker M, Becker M. Imaging fracture anisotropic flow channeling using GPR signal amplitude and phase[C]//SEG Technical Program Expanded Abstracts 2013. Society of Exploration Geophysicists, 2013.
    [12] Giertzuch P L, Doetsch J, Jalali M, et al. Time-lapse ground penetrating radar difference reflection imaging of saline tracer flow in fractured rock[J]. Geophysics, 2020, 85(3): H25-H37.
    [13] Dong Z J, Feng X, Zhou H Q, et al. Super-resolution detection of millimeter-scale fractures with fluid flow using time-lapse full-polarimetric GPR and anisotropy analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 62: 4500816.
    [14] Eskandari Torbaghan M, Li W D, Metje N, et al. Automated detection of cracks in roads using ground penetrating radar[J]. Journal of Applied Geophysics, 2020, 179: 104118.
    [15] Yulianita D, Aisyah R R, Wafi A, et al. Detection of water seepage in lake body using ground penetrating radar method[J]. Journal of Physics: Conference Series, 2021, 1876(1): 012012.
    [16] Guo L, Chen J, Lin H. Subsurface lateral preferential flow network revealed by time-lapse ground-penetrating radar in a hillslope[J]. Water Resources Research, 2014, 50(12): 9127-9147.
    [17] Richards L A. Capillary conduction of liquids through porous mediums[J]. Journal of Applied Physics ,1931, 1(5): 318-333.
    [18] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
    [19] 方正. 降雨诱发土质滑坡变形预测方法与稳定性分析[D]. 长沙: 中南大学, 2022.Fang Z. Deformation prediction method and stability analysis of rainfall induced soil landslide[D]. Changsha: Central South University, 2022. (in Chinese)
    [20] Topp G C, Davis J L, Annan A P. Electromagnetic determination of soil water content: measurements in coaxial transmission lines[J]. Water Resources Research, 1980, 16(3): 574-582.
    [21] Minet J, Wahyudi A, Bogaert P, et al. Mapping shallow soil moisture profiles at the field scale using full-waveform inversion of ground penetrating radar data[J]. Geoderma, 2011, 161(3/4): 225-237.
    [22] Yee K E. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307.
    [23] 王金华, 陈嘉琦. 我国石窟寺保护现状及发展探析[J]. 东南文化, 2018(1): 6-14, 127-128.Wang J H, Chen J Q. Current status and future development of cave temples protection in China[J]. Southeast Culture, 2018(1): 6-14, 127-128.(in Chinese)
    [24] 王金华, 陈嘉琦, 王乐乐, 等. 我国石窟寺病害及其类型研究[J]. 东南文化, 2022(4): 25-32.Wang J H, Chen J Q, Wang L L, et al. Deterioration patterns of grotto temples in China[J]. Southeast Culture, 2022(4): 25-32.(in Chinese)
    [25] 李金文. 大足北山石刻水文地质模型及渗水特征[D]. 兰州: 兰州大学, 2023.Li J W. Hydrogeological model and seepage characteristics of Dazu Beishan Rock Carvings[D]. Lanzhou: Lanzhou University, 2023. (in Chinese)
    [26] 唐申强. 探地雷达瞬时属性分析技术在岩溶涌水通道探测中的应用[J]. 工程地球物理学报, 2022, 19(1): 1-5.Tang S Q. Application of GPR instantaneous attribute analysis technology in Karst water inrush channel detection[J]. Chinese Journal of Engineering Geophysics, 2022, 19(1): 1-5.(in Chinese)
    [27] 赵文轲. 探地雷达属性技术及其在考古调查中的应用研究[D]. 杭州: 浙江大学, 2013.Zhao W K. The study of ground penetrating radar attribute technology for archaeological prospection[D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
    [28] Young R A, Deng Z H, Marfurt K J, et al. 3-D dip filtering and coherence applied to GPR data: a study[J]. The Leading Edge, 1997, 16(6): 921-928.
    [29] Sénéchal P, Perroud H, Sénéchal G. Interpretation of reflection attributes in a 3-D GPR survey at Vallée d’Ossau, western Pyrenees, France[J]. Geophysics, 2000, 65(5): 1435-1445.
    [30] 朱沛成. 探地雷达属性分析技术及其在隧道地质预报中的应用研究[D]. 南宁: 广西大学, 2017.Zhu P C. The study of ground penetrating radar attribute analysis technology for tunnel geological prediction[D]. Nanning: Guangxi University, 2017. (in Chinese)
    [31] 徐晨阳. 基于探月雷达数据处理的月球浅表结构研究[D]. 长春: 吉林大学, 2021.Xu C Y. Study on lunar shallow structure based on lunarpenetrating radar data processing[D]. Changchun: Jilin University, 2021. (in Chinese)
    [32] Zhou H Q, Feng X, Dong Z J, et al. Multiparameter adaptive target classification using full-polarimetric GPR: a novel approach to landmine detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 2592-2606.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

安娅菲,冯晅,董泽君,周皓秋,张明贺,杨佳润,张英浩.砂岩体裂隙渗流区的探地雷达信号动态响应机制[J].重庆大学学报,2024,47(10):181~190

Copy
Share
Article Metrics
  • Abstract:881
  • PDF: 342
  • HTML: 179
  • Cited by: 0
History
  • Received:January 16,2024
  • Online: November 14,2024
Article QR Code