Bilinear weighted least square state estimation of the electricity-water coupled system
Author:
Affiliation:

1.School of Electrical Engineering, Chongqing University, Chongqing400044, P. R. China;2.Economic and Technology Research Institute, State Grid Hebei Electric Power Co., Ltd., Shijiazhuang050000, P. R. China

Clc Number:

TM732

  • Article
  • | |
  • Metrics
  • |
  • Reference [35]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Multi-energy flow state estimation is a critical area of research in the energy internet. Current research on the state estimation of electricity-water coupling system is still in its infancy, facing challenges such as poor adaptability to water network conditions and insufficient utilization of electricity-water coupling information. To address these issues, this paper proposes a bilinear weighted least square (WLS) state estimation method for water networks, considering the correction of the friction coefficient. By incorporating virtual measurements of water pumps and bi-directional transmission of coupling information, a bilinear WLS state estimation method is developed, suitable for interdependent, cooperative and joint operations of electricity-water coupling systems. The effectiveness of the proposed method is verified by an 11-node water network and two electricity-water coupling systems, formed by coupling with IEEE-14 node and IEEE-118 node power systems. Numerical results highlight the necessity of correcting the friction coefficient in water network state estimation, the computational efficiency and adaptability of the bilinear WLS method for low flow rate water networks, and the the improvement in accuracy, data consistency and observability achieved through cooperative and joint estimation for both power systems and water networks.

    Reference
    [1] 孙宏斌, 郭庆来, 吴文传, 等. 面向能源互联网的多能流综合能量管理系统: 设计与应用[J]. 电力系统自动化, 2019, 43(12): 122-128, 171.Sun H B, Guo Q L, Wu W C, et al. Integrated energy management system with multi-energy flow for energy Internet: design and application[J]. Automation of Electric Power Systems, 2019, 43(12): 122-128, 171. (in Chinese)
    [2] 臧海祥, 耿明昊, 黄蔓云, 等. 电-热-气混联综合能源系统状态估计研究综述与展望[J]. 电力系统自动化, 2022, 46(7): 187-199.Zang H X, Geng M H, Huang M Y, et al. Review and prospect of state estimation for electricity-heat-gas integrated energy system[J]. Automation of Electric Power Systems, 2022, 46(7): 187-199. (in Chinese)
    [3] 董今妮, 孙宏斌, 郭庆来, 等. 面向能源互联网的电-气耦合网络状态估计技术[J]. 电网技术, 2018, 42(2): 400-408.Dong J N, Sun H B, Guo Q L, et al. State estimation of combined electric-gas networks for energy Internet[J]. Power System Technology, 2018, 42(2): 400-408.(in Chinese)
    [4] Zang H X, Geng M H, Huang M Y, et al. Asynchronous and adaptive state estimation of integrated electricity-gas energy systems[J]. IEEE Internet of Things Journal, 2023, 10(9): 7636-7644.
    [5] Xu D L, Xu J J, Wu Z J, et al. A real-time state estimation framework for integrated energy system considering measurement delay[J]. IET Generation, Transmission & Distribution, 2022, 16(14): 2891-2902.
    [6] Zang H X,Geng M H,Xue M F,et al. A robust state estimator for integrated electrical and heating networks[J]. IEEE Access, 2019, 7: 109990-110001.
    [7] Sheng T T, Yin G X, Guo Q L, et al. A hybrid state estimation approach for integrated heat and electricity networks considering time-scale characteristics[J]. Journal of Modern Power Systems and Clean Energy, 2020,8(4): 636-645.
    [8] 董今妮, 孙宏斌, 郭庆来, 等. 热电联合网络状态估计[J]. 电网技术, 2016(6): 1635-1641.Dong J N, Sun H B, Guo Q L, et al. State estimation for combined electricity and heat networks[J]. Power System Technology, 2016(6): 1635-1641. (in Chinese)
    [9] Du Y X, Zhang W, Zhang T T. ADMM-based distributed state estimation for integrated energy system[J]. CSEE Journal of Power and Energy Systems, 2019, 5(2): 275-283.
    [10] 刘鑫蕊, 李垚, 孙秋野, 等. 基于多时间尺度的电-气-热耦合网络动态状态估计[J]. 电网技术, 2021, 45(2): 479-488.Liu X R, Li Y, Sun Q Y, et al. Interaction and joint state estimation of electric-gas-thermal coupling network[J]. Power System Technology, 2021, 45(2): 479-488. (in Chinese)
    [11] Xiang X Z, Jia S F. China’s water-energy nexus: assessment of water-related energy use[J]. Resources, Conservation and Recycling, 2019, 144:32-38.
    [12] 赵霞, 孙名轶, 李欣怡, 等. 面向区域综合能源服务的电-水联合潮流[J]. 电力自动化设备, 2020, 40(12): 23-30.Zhao X, Sun M Y, Li X Y, et al. Combined load flow of integrated electricity-water system for regional multi-energy service[J]. Electric Power Automation Equipment, 2020, 40(12): 23-30. (in Chinese)
    [13] Zamzam A S, Dall'Anese E, Zhao C, et al. Optimal water-power flow problem: formulation and distributed optimal solution[J]. IEEE Transactions on Control of Network Systems, 2018,6(1): 37-47.
    [14] 宋仕恒, 穆云飞, 孟宪君, 等. 面向分布式电源消纳的配电网-配水网经济调度方法[J]. 电力系统自动化, 2019, 43(11): 95-103.Song R H, Mu Y F, Meng X J, et al. Joint economical dispatch method of power distribution network and water distribution system for distributed generator accommodation [J]. Automation of Electric Power Systems, 2019, 43(11): 95-103. (in Chinese)
    [15] Moazeni F, Khazaei J, Mitra P. An integrated state-estimation framework for interdependent water and energy systems[J]. Journal of Hydrology, 2020, 590(125393).
    [16] Tshehla K S, Hamam Y, Abu-Mahfouz A M. State estimation in water distribution network: a review[C]//2017 IEEE 15th International Conference on Industrial Informatics (INDIN). IEEE, 2017: 1247-1252.
    [17] Sterling M J H, Bargiela A. Minimum norm state estimation for computer control of water distribution systems[J]. IEE Proceedings D: Control Theory and Applications, 1984, 131(2): 57-63.
    [18] Fusco F, Arandia E. State estimation for water distribution networks in the presence of control devices with switching behavior[J]. Procedia Engineering, 2017, 186:592-600.
    [19] Arsene C T C, Gabrys B. Mixed simulation-state estimation of water distribution systems based on a least squares loop flows state estimator[J]. Applied Mathematical Modelling, 2014, 38(2): 599-619.
    [20] Cheng W P, Yu T C, Xu G. Real-time model of a large-scale water distribution system[J]. Procedia Engineering, 2014, 89: 457-466.
    [21] Andersen J H, Powell R S. Implicit state-estimation technique for water network monitoring[J]. Urban Water, 2000, 2(2): 123-130.
    [22] Bargiela A. On-line monitoring of water distribution networks[D]. Durham, North East England, UK: Durham University, 1984.
    [23] 陈艳波, 于尔铿. 电力系统状态估计[M]. 北京: 科学出版社, 2021.Chen Y B, Yu E K. Power system state estimation[M]. Beijing: Science Press, 2021.(in Chinese)
    [24] Gomez-Exposito A, Gomez-Quiles C, de la Villa Jaen A. Bilinear power system state estimation[J]. IEEE Transactions on Power Systems, 2012, 27(1): 493-501.
    [25] Gómez-Quiles C, Gil H A, de la Villa Jaen A, et al. Equality-constrained bilinear state estimation[J]. IEEE Transactions on Power Systems, 2013, 28(2): 902-910.
    [26] Chen Y B, Ma J, Liu F, et al. A bilinear robust state estimator[J]. International Transactions on Electrical Energy Systems, 2016, 26(7): 1476-1492.
    [27] 陈艳波, 马进. 一种双线性抗差状态估计方法[J]. 电力系统自动化, 2015(6): 41-47.Chen Y B, Ma J. A bilinear robust state estimation method for power systems[J]. Automation of Electric Power Systems, 2015, 39(6): 41-47. (in Chinese)
    [28] 郑顺林, 刘进, 陈艳波, 等. 基于加权最小绝对值的电-气综合能源系统双线性抗差状态估计[J]. 电网技术, 2019, 43(10): 3733-3744.Zheng S L, Liu J, Chen Y B, et al. Bilinear robust state estimation based on weighted least absolute value for integrated electricity-gas system [J]. Power System Technology, 2019, 43(10): 3733-3742. (in Chinese)
    [29] 陈艳波, 姚远, 杨晓楠, 等. 面向电-热综合能源系统的双线性抗差状态估计方法[J]. 电力自动化设备, 2019, 39(8): 47-54.Chen Y B, Yao Y, Yang X N, et al. Bilinear robust state estimation method for integrated electricity-heat energy systems[J]. Electric Power Automation Equipment, 2019, 39(8):47-54. (in Chinese)
    [30] 严煦世, 刘遂庆. 给水排水管网系统[M]. 3版. 北京: 中国建筑工业出版社, 2014.Yan X S, Liu S Q. Water supply and drainage network system[M]. 3rd ed. Beijing: China Architecture & Building Press, 2014. (in Chinese)
    [31] Mays L W. Water resources engineering[M]. 2nd ed. Hoboken, NJ: John Wiley & Sons, 2011.
    [32] Rossman L A. EPANET 2 user’s manual[J]. Laboratory Office of Research & Development U.S. Environmental Protection Agency, 2000, 19(1):115-118.
    [33] Abraham E, Stoianov I. Sparse null space algorithms for hydraulic analysis of large-scale water supply networks[J]. Journal of Hydraulic Engineering, 2016, 142(3): 4015058.1.
    [34] Zimmerman R D, Murillo-Sanchez C E. Matpower 7.1 user’s manual[J]. Power Systems Engineering Research Center, 2011.
    [35] Cui J X. 11 node WDN[EB/OL][2023-02-21]. https://www.researchgate.net/publication/368667053_11nodeWDN.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

崔镜心,赵霞,王骆.电-水耦合系统双线性加权最小二乘状态估计[J].重庆大学学报,2024,47(11):65~80

Copy
Share
Article Metrics
  • Abstract:133
  • PDF: 127
  • HTML: 76
  • Cited by: 0
History
  • Received:February 15,2023
  • Online: December 04,2024
Article QR Code