Electrical parameters identification of permanent magnet synchronous motor based on improved snake optimization algorithm
Author:
Affiliation:

1.Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan621010, P. R. China;2.Xi’an Institute of Space Radio Technology, Xi’an710100, P. R. China;3.College of Aerospace Engineering, Chongqing University, Chongqing400044, P. R. China

Clc Number:

TM351

  • Article
  • | |
  • Metrics
  • |
  • Reference [27]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The precise design of the drive unit controller for space antennas depends on the accurate identification of the electrical parameters of the permanent magnet synchronous motor(PMSM). Achieving reliable parameters through precise identification is essential for the motor’s performance. However, the standard snake optimization algorithm(SOA) used in PMSM parameters identification faces several issues, such as slow convergence speed, low accuracy, and susceptibility to local optima. To address these limitations, three strategies are proposed in this paper. First, the Tent chaotic map and quasi-opposition-based learning strategy are introduced to enrich the diversity of the initial snake population. Second, improvements to the thresholds for food quantity and environmental temperature are made to enhance the algorithm’s convergence speed. Finally, the cuckoo search algorithm based on Cauchy mutation is utilized to improve the global optimization capabilities and robustness of the algorithm. These three strategies, combined with the standard SOA, form an improved snake optimization algorithm. The proposed algorithm is applied to identify the electrical parameters of the PMSM in the space antenna drive unit. Results show that, compared with the standard SOA, the improved algorithm achieves higher identification accuracy, faster convergence speed, and better robustness.

    Reference
    [1] Ahandani M A, Abbasfam J, Kharrati H. Parameter identification of permanent magnet synchronous motors using quasi-opposition-based particle swarm optimization and hybrid chaotic particle swarm optimization algorithms[J]. Applied Intelligence, 2022, 52(11): 13082-13096.
    [2] 吴春, 赵宇纬, 孙明轩. 采用测量电压的永磁同步电机多参数在线辨识[J]. 中国电机工程学报, 2020, 40(13): 4329-4340.Wu C, Zhao Y W, Sun M X. Multiparameter online identification for permanent magnet synchronous machines using voltage measurements[J]. Proceedings of the CSEE, 2020, 40(13): 4329-4340. (in Chinese)
    [3] 张铸, 张仕杰, 饶盛华, 等. 改进樽海鞘群算法的永磁同步电机多参数辨识[J]. 电机与控制学报, 2022, 26(8): 139-146.Zhang Z, Zhang S J, Rao S H, et al. Multi-parameter identification of permanent magnet synchronous motor based on improved salp swarm algorithm[J]. Electric Machines and Control, 2022, 26(8): 139-146. (in Chinese)
    [4] Rafaq M S, Jung J W. A comprehensive review of state-of-the-art parameter estimation techniques for permanent magnet synchronous motors in wide speed range[J]. IEEE Transactions on Industrial Informatics, 2019, 16(7): 4747-4758.
    [5] Yu Y L, Huang X Y, Li Z K, et al. Full parameter estimation for permanent magnet synchronous motors[J]. IEEE Transactions on Industrial Electronics, 2022, 69(5): 4376-4386.
    [6] 石建飞, 戈宝军, 吕艳玲, 等. 永磁同步电机在线参数辨识方法研究[J]. 电机与控制学报, 2018, 22(3): 17-24.Shi J F, Ge B J, Lü Y L, et al. Research of parameter identification of permanent magnet synchronous motor on line[J]. Electric Machines and Control, 2018, 22(3): 17-24. (in Chinese)
    [7] Wang Z W, Liu X, Wang W Z, et al. UKF-based parameter estimation and identification for permanent magnet synchronous motor[J]. Frontiers in Energy Research, 2022, 10: 855649.
    [8] Li X, Kennel R. General formulation of Kalman-filter-based online parameter identification methods for VSI-fed PMSM[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 2856-2864.
    [9] 李垣江, 董鑫, 魏海峰, 等. 基于改进模型参考自适应系统的永磁同步电机参数辨识[J]. 控制理论与应用, 2020, 37(9): 1983-1988.Li Y J, Dong X, Wei H F, et al. Parameter identification method of permanent magnet synchronous motor based on improved model reference adaptive system[J]. Control Theory & Applications, 2020, 37(9): 1983-1988. (in Chinese)
    [10] 谷鑫, 胡升, 史婷娜, 等. 基于神经网络的永磁同步电机多参数解耦在线辨识[J]. 电工技术学报, 2015, 30(6): 114-121.Gu X, Hu S, Shi T N, et al. Muti-parameter decoupling online identification of permanent magnet synchronous motor based on neural network[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 114-121. (in Chinese)
    [11] 肖曦, 许青松, 王雅婷, 等. 基于遗传算法的内埋式永磁同步电机参数辨识方法[J]. 电工技术学报, 2014, 29(3): 21-26.Xiao X, Xu Q S, WANG Y T, et al. Parameter identification of interior permanent magnet synchronous motors based on genetic algorithm[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 21-26. (in Chinese)
    [12] Jin Z, Sun X, Lei G, et al. Sliding mode direct torque control of SPMSMs based on a hybrid wolf optimization algorithm[J]. IEEE Transactions on Industrial Electronics, 2021, 69(5): 4534-4544.
    [13] 吴定会, 黄旭, 全亚威, 等. 基于变异珊瑚礁算法的永磁同步电机参数辨识[J]. 系统仿真学报, 2018, 30(8): 3024-3032.Wu D H, Huang X, Quan Y W, et al. Parameter identification of permanent magnet synchronous motor based on mutation coral reef algorithm[J]. Journal of System Simulation, 2018, 30(8): 3024-3032. (in Chinese)
    [14] Wu Z Q, Du C Q. The parameter identification of PMSM based on improved cuckoo algorithm[J]. Neural Processing Letters, 2019, 50(3): 2701-2715.
    [15] Hashim F A, Hussien A G. Snake Optimizer: a novel meta-heuristic optimization algorithm[J]. Knowledge-Based Systems, 2022, 242: 108320.
    [16] 滕志军, 吕金玲, 郭力文, 等. 一种基于Tent映射的混合灰狼优化的改进算法[J]. 哈尔滨工业大学学报, 2018, 50(11): 40-49.Teng Z J, Lü J L, Guo L W, et al. An improved hybrid grey wolf optimization algorithm based on Tent mapping[J]. Journal of Harbin Institute of Technology, 2018, 50(11): 40-49. (in Chinese)
    [17] 李雪岩, 李雪梅, 李学伟, 等. 基于混沌映射的元胞遗传算法[J]. 模式识别与人工智能, 2015, 28(1): 42-49.Li X Y, Li X M, Li X W, et al. Cellular genetic algorithm based on chaotic map[J]. Pattern Recognition and Artificial Intelligence, 2015, 28(1): 42-49. (in Chinese)
    [18] Yu Y, Gao S C, Cheng S, et al. CBSO: a memetic brain storm optimization with chaotic local search[J]. Memetic Computing, 2018, 10(4): 353-367.
    [19] 周鹏, 董朝轶, 陈晓艳, 等. 基于阶梯式Tent混沌和模拟退火的樽海鞘群算法[J]. 电子学报, 2021, 49(9): 1724-1735.Zhou P, Dong C Y, Chen X Y, et al. A salp swarm algorithm based on stepped tent chaos and simulated annealing[J]. Acta Electronica Sinica, 2021, 49(9): 1724-1735. (in Chinese)
    [20] Yang X S, Deb S. Cuckoo search via Lévy flights[C]// 2009 World Congress on Nature & Biologically Inspired Computing. Piscataway: IEEE, 2009: 210-214.
    [21] Cheng J T, Xiong Y. Multi-strategy adaptive cuckoo search algorithm for numerical optimization[J]. Artificial Intelligence Review, 2023, 56(3): 2031-2055.
    [22] 邢致恺, 贾鹤鸣, 宋文龙. 基于莱维飞行樽海鞘群优化算法的多阈值图像分割[J]. 自动化学报, 2021, 47(2): 363-377.Xing Z K, Jia H M, Song W L. Levy flight trajectory-based salp swarm algorithm for multilevel thresholding image segmentation[J]. Acta Automatica Sinica, 2021, 47(2): 363-377. (in Chinese)
    [23] 刘航, 张晓明, 汪长剑. 基于柯西分布和父种轮换机制的种子优化算法[J]. 模式识别与人工智能, 2021, 34(7): 581-591.Liu H, Zhang X M, Wang C J. Bean optimization algorithm based on cauchy distribution and parent rotation mechanism[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(7): 581-591. (in Chinese)
    [24] H?ibakk R, Lukkassen D, Meidell A, et al. Geometric construction of some lehmer means[J]. Mathematics, 2018, 6(11): 251-268.
    [25] 刘细平, 胡卫平, 丁卫中, 等. 永磁同步电机多参数辨识方法研究[J]. 电工技术学报, 2020, 35(6): 1198-1207.Liu X P, Hu W P, Ding W Z, et al. Research on multi-parameter identification method of permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1198-1207. (in Chinese)
    [26] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3): 46-61.
    [27] Ramakrishnan R, Islam R, Islam M, et al. Real time estimation of parameters for controlling and monitoring permanent magnet synchronous motors[C]// IEEE International Electric Machines & Drives Conference. Piscataway: IEEE, 2009: 1194-1199.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

何伟,陈薄,贾清健,宁慧铭.基于改进蛇优化算法的永磁同步电机电气参数辨识[J].重庆大学学报,2024,47(11):81~93

Copy
Share
Article Metrics
  • Abstract:168
  • PDF: 120
  • HTML: 106
  • Cited by: 0
History
  • Received:March 28,2023
  • Online: December 04,2024
Article QR Code