Numerical differentiation for evaluating theoretical accuracy of device combination trajectory
Author:
Affiliation:

1.Xichang Satellite Launch Center, Xichang, Sichuan 615000, P. R. China;2.College of Automation, Chongqing University, Chongqing 400044, P. R. China

Fund Project:

Supperted by National Natural Science Foundation of China (61633005).

  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The theoretical accuracy evaluation of device combination trajectories is a critical foundation for device allocation design and trajectory selection. Existing models for accuracy evaluation are based on the error propagation principle, using the Jacobian matrix of the trajectory with respect to measurement elements as their core. However, obtaining the analytic expressions for the Jacobian matrix elements in complex trajectory equations is challenging. This paper proposes and designs a theoretical accuracy evaluation algorithm for device combination trajectories based on numerical differentiation. By constructing numerical sequences and calculating the Jacobian matrix using numerical differentiation with spline interpolation, the theoretical accuracy of the device combination trajectory is determined. The algorithm’s effectiveness and practicality are validated by comparing the Jacobian matrix and accuracy values of the proposed method with those derived from a single device position equation.

    Reference
    [1] 张金槐. 远程火箭精度分析与评估[M]. 长沙: 国防科技大学出版社, 1995.Zhang J H. Accuracy analysis and evaluation of long range rocket[M]. Changsha: National University of Defense Science and Technology Press, 1995. (in Chinese)
    [2] 刘利生. 外弹道测量数据处理[M]. 北京: 国防工业出版社, 2002.Liu L S. Data processing of exterior ballistic measurement[M]. Beijing: National Defense Industry Press, 2002. (in Chinese)
    [3] 唐雪梅, 蔡洪, 杨华波, 等. 导弹武器精度分析与评估[M]. 北京: 国防工业出版社, 2015.Tang X M, Chai H, Yang H B, et al. Accuracy analysis and evaluation of missile weapon[M]. Beijing: National Defense Industry Press, 2015. (in Chinese)
    [4] 常晓华, 蒋鲁佳, 杨 锐, 等. 垂线偏差对弹道落点精度的影响分析[J]. 国防科技大学学报, 2017, 39(4): 1-5.Chang X H,Jiang L J,Yang R, et al. Analysis on effects of vertical deflection for trajectory impact accuracy[J]. Journal of National University of Defense Technology. 2017, 39(4):1-5. (in Chinese)
    [5] 薛冰, 霍鹏飞, 杨小会. 基于误差合成的射程修正系统精度评估[J]. 探测与控制学报, 2016, 38(4): 58-61.Xue B, Huo P F, Yang X H. Accuracy evaluation of range correction system based on error synthesis[J]. Journal of Detection & Control, 2016, 38(4): 58-61. (in Chinese)
    [6] 雷晓云, 张志安. 基于蒙特卡罗法的一维弹道修正弹落点精度分析[J]. 系统仿真学报, 2016, 28(7): 1685-1691.Lei X Y, Zhang Z A. Research of impact point accuracy of one-dimensional trajectory correction projectile based on Monte Carlo[J]. Journal of System Simulation, 2016, 28(7): 1685-1691. (in Chinese)
    [7] 冯燕来, 王红杰, 李旭等. 基于外弹道修正理论的导弹落点预测精度评估方法[J]. 指挥信息系统与技术, 2017, 8(4): 48-52.Feng Y L, Wang H J, Li X, et al. Precision evaluation method for ballistic missile impact-point prediction based on exterior ballistic correction theory[J]. Command Information System and Technology, 2017, 8(4): 48-52. (in Chinese)
    [8] 郭军海. 弹道测量数据融合技术[M]. 北京: 国防工业出版社, 2012.Guo J H. Ballistic measurement data fusion technology[M]. Beijing: National Defense Industry Press, 2012. (in Chinese)
    [9] 宫志华, 刘洋, 陈春江. 分布式雷达对非合作目标弹道测量精度分析[J]. 弹道学报, 2017, 29(3): 43-48.Gong Z H, Liu Y, Chen C J. Analysis on precision of distributed radar measuring[J]. Ballistic Journal, 2017, 29(3): 43-48. (in Chinese)
    [10] 王子鉴. 多弹头惯性/星光复合制导精度评估与弹道折合方法研究[D]. 长沙: 国防科技大学, 2018.Wang Z J. Study on accuracy evaluation and trajectory conversion of inertial-stellar integrated guidance system based on multiple warheads[D]. Changsha: National University of Defense Science and Technology, 2018. (in Chinese)
    [11] 王若晗. 光电经纬仪系统误差分析及修正方法研究[D]. 西安: 西安理工大学, 2023.Wang R H. Research on system error analysis and correction method of photoelectric theodolite[D]. Xi’an: Xi’an University of Technology, 2023. (in Chinese)
    [12] Ji R P, Liang Y, Xu L F, et al. Trajectory prediction of ballistic missiles using Gaussian process error model[J]. Chinese Journal of Aeronautics, 2022, 35(1): 458-469.
    [13] 张哲, 代洪华, 冯浩阳, 等. 初值约束与两点边值约束轨道动力学方程的快速数值计算方法[J]. 力学学报, 2022, 54(2):503-516.Zhang Z,Dai H H, Feng H Y, et al. Efficient numerical method for orbit dynamic functions with initial value and two-point boundary-value constraints[J]. Journal of Theoretical and Applied Mechanics, 2022, 54(2): 503-516. (in Chinese)
    [14] Saumya R J, Senapati A, Stability, convergence and error analysis of B-spline collocation with Crank-Nicolson method and finite element methods for numerical solution of Schrodinger equation arises in quantum mechanics[J]. Physica Scripta, 2023, 98(11):115232.
    [15] Hosseinian A, Assari P, Dehghan M. The numerical solution of nonlinear delay Volterra integral equations using the thin plate spline collocation method with error analysis[J].Computational and Applied Mathematics,Computational and Applied Mathematics 2023, 42(2): 83.
    [16] 吴开腾. 数值计算方法及其程序实现[M]. 北京: 科学出版社, 2015.Wu K T. Numerical calculation method and its program implementation[M]. Beijing: Science Press, 2015. (in Chinese)
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

何京江,杨涵,郭茂耘,柴毅.数值微分在设备组合弹道精度评估中的应用[J].重庆大学学报,2025,48(2):1~9

Copy
Share
Article Metrics
  • Abstract:304
  • PDF: 178
  • HTML: 98
  • Cited by: 0
History
  • Received:July 23,2022
  • Online: March 04,2025
Article QR Code