Modeling and Optimization Design of Post-buckling Tensegrity Metamaterial
DOI:
CSTR:
Author:
Affiliation:

College of Aerospace Engineering,Chongqing University

Clc Number:

O328???????

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Balancing the attainment of low-frequency bandgap with achieving higher load capacity is a significant concern in metamaterial design. By harnessing the post-buckling characteristics of bars, a novel tensegrity metamaterial is proposed, where the introduction of post-buckling leads to a softening of the structure"s stiffness, thereby enabling a low-frequency vibration isolation functionality with enhanced load-bearing capability. Utilizing the elliptic integral method to compute the post-buckling deformations of bars allows for the rapid determination of the stiffness of the tensegrity unit. Combined with the spring-mass diatomic chain model, bandgaps are calculated using Bloch"s theorem under periodic boundary conditions. To strike a balance between band gaps and load capacity, a data-driven dual-objective optimization method is employed, yielding the Pareto frontier of the post-buckling tensegrity metamaterial"s ultimate load and lower bandgap limit. Optimization results demonstrate that the bandgap frequency of the optimized structure can be as low as 3Hz, with a load capacity exceeding 100N. Compared to other low-frequency vibration isolation metamaterials, the ultimate load capacity can be increased by over 3.6 times at the same bandgap frequency.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 12,2024
  • Revised:May 08,2024
  • Adopted:May 08,2024
  • Online:
  • Published:
Article QR Code