摘要
通过模拟实验结合X射线荧光光谱仪(X-ray fluorescence spectrometer,XRF)、电感耦合等离子光谱发生仪(inductively coupled plasma spectrometer,ICP)及矿物解离分析仪(mineral liberation analyser,MLA)等研究了钼精矿焙烧处理流程中多种杂质元素间的相互作用,在MLA对物相定量分析的基础上,采用Factsage7.0软件分析了钼精矿焙烧过程中不同杂质元素反应进行的热力学条件。结果表明:杂质元素在钼精矿及后续处理流程中的分布存在明显的粒度偏析,主要表现为K、Si等杂质更多以大分子量的矿物形式赋存在较粗粒度的钼精矿中,而Fe、Ca、Cu等杂质则更多以FeS2、CaSO4、CuFeS2等小分子量的化合物形式赋存在较细粒度的钼精矿中。FeS2、CaSO4和SiO2等杂质会在高温焙烧过程中与MoO3形成致密度较高的混合物,降低Mo的浸出率。云母在钼精矿焙烧过程中会分解生成正长石,而正长石在CaF2作助熔剂的条件下可转化出易溶于水的K、Al等金属离子进而被水洗去除。
钼是一种具有高熔点、高耐磨性、良好导电及导热性质的金属,被广泛应用于合金、电极、催化剂、复合材料等领
钼焙砂和钼酸铵可通过酸洗除钾,但酸洗液会造成钼金属的流失且难以排放,给环境带来较大危害,目前生产中已被禁止采用该方法除
本实验中所用钼精矿来自国内某钼加工企业所用原材料,通过模拟钼酸铵的生产过程(

图1 钼酸铵生产流程
Fig. 1 Ammonium molybdate production process
对实验1.1中剩余的钼精矿、钼焙砂、水洗产物、氨浸渣各取20 g,分别放入研钵中研磨至200目以上,分别取10 g上述4种产物用ICP(ICP-OES: Aglient 5110) 分析其中的K元素,剩下的用XRF(XRF: ZSX100e) 分析化学成分。
通过实验1.1发现钼精矿粒度范围为150~300目,其中200~300目的细钼精矿质量占比约为70%,150~200目的粗钼精矿占比约为30%,2种试样中的主要元素含量如

图2 不同粒度钼精矿中元素分布
Fig. 2 Distribution of elements in molybdenum concentrates with different particle sizes
矿物名称 | 化学式 | 质量百分比/% | 面积百分比/% | 面积/μ |
---|---|---|---|---|
自然铁 | Fe | 0.02 | 0.01 | 479.27 |
真红石 | TiO2 | 0.01 | 0.01 | 260.85 |
方解石 | CaCO3 | 0.01 | 0.01 | 419.36 |
绿泥石 | Fe2+3Mg1.5AlFe3+0.5Si3AlO12(OH)6 | 0.02 | 0.04 | 1 092.09 |
赤铁矿 | Fe2O3 | 0.04 | 0.03 | 999.73 |
高岭石 | Al2Si2O5(OH)4 | 0.04 | 0.06 | 1 699.92 |
伊利石 | K0.6(H3O)0.4Al1.3Mg0.3Fe2+0.1Si3.5O10(OH) | 0.02 | 0.04 | 1 102.08 |
萤石 | CaF2 | 0.08 | 0.13 | 3 774.28 |
正长石 | KAlSi3O8 | 0.04 | 0.07 | 2 045.65 |
黄铜矿 | CuFeS2 | 0.04 | 0.04 | 1 253.10 |
钡铁云母 | Ba0.75K0.25Fe2+2.25Mg0.75Si3Al0.7Fe3+0.3O10S1.5(OH)0.5 | 0.04 | 0.04 | 1 190.69 |
铅丹 | Pb2PbO4 | 0.11 | 0.07 | 2 020.69 |
云母 | KAl3Si3O10(OH)1.8F0.2 | 0.36 | 0.63 | 18 799.00 |
石英 | SiO2 | 0.27 | 0.51 | 15 371.70 |
硬石膏 | CaSO4 | 0.15 | 0.25 | 7 366.33 |
黄铁矿 | FeS2 | 1.23 | 0.21 | 36 359.88 |
孔隙 | 0.00 | 6.40 | 190 931.80 | |
辉钼矿 | MoS2 | 95.57 | 85.61 | 2 554 936.80 |
未知矿物 | 1.95 | 4.81 | 143 533.60 |
钼精矿中的主要成分是MoS2,由
由
为了探究K在焙烧过程中赋存形式的具体变化机理,通过MLA对钼精矿在正常生产过程中的各固相产物进行物相分析,得到含K矿物在焙烧–水洗阶段的质量分数变化(

图3 含K矿物在焙烧-水洗过程质量分数的变化
Fig. 3 Change of mass fraction of potassium-bearing minerals during roasting-washing process
根据
(1) |
。 | (2) |
式中:、分别为矿物i在焙烧、水洗过程中的质量变化,g;、、分别为实验1.2中钼精矿、钼焙砂、水洗产物的质量,g;、、分别为矿物i在钼精矿、钼焙砂、水洗产物中的质量分数。焙烧和水洗都是质量损失的过程,因此,>>。由
(3) |
采用Factsage7.0热力学软件推测该化学反应发生的可行性,通过以下公式计算出各反应在不同温度下的吉布斯自由能:
。 | (4) |
式中:T为反应的热力学温度,K;为反应在温度T的标准摩尔吉布斯自由能,MJ·mo

图4 云母分解的热力学分析
Fig. 4 Thermodynamic analysis of decomposition of muscovite
通过非线性拟合出的函数计算出的热力学温度为727 K,即在727 K以上云母分解的反应可以自发进行。根据
根据唐丽霞

图5 钼焙砂及水洗后钼焙砂的BSE图像
Fig. 5 Backscattered electron microscope images of molybdenum calcine and washed molybdenum calcine
从
, | (5) |
, | (6) |
, | (7) |
, | (8) |
。 | (9) |
通过Factsage7.0热力学软件对式(

图6 正长石转化出可溶性钾的热力学分析
Fig. 6 Thermodynamic analysis of soluble potassium from orthoclase
由
氨浸后的固相中Mo元素含量仍较高,这部分Mo未浸出到钼酸铵溶液中,造成了Mo的损失。有研究表明,氨浸渣中Mo的主要存在形态为渣中吸附的钼酸铵、未溶于氨液的MoO3、不溶性钼酸盐、二氧化钼、硫化钼等,其中MoO3的含量相对较

图7 氨浸渣中Mo的存在形式
Fig. 7 The existence form of molybdenum in ammonia leaching residue
由
通过1.2的实验方法得出不同粒径试样中的Mo和K在生产过程中质量分数的变化,由ICP的测定结果对XRF的测定结果进行验证,XRF检测结果如

图8 不同粒径试样在焙烧-水洗-氨浸过程的元素含量变化
Fig. 8 Changes in the elemental content of samples with different particle sizes during roasting, washing and ammonia leaching
根据
, | (10) |
, | (11) |
。 | (12) |
式中:为试样中i元素在焙烧过程损失的质量,g;、分别为试样中i元素在水洗液、氨浸液中的质量,g;、分别为实验1.1中试样在焙烧前后的质量,g;、分别为实验1.1中试样在水洗前后的质量,g;、分别为实验1.1中试样在氨浸前后的质量,g;、、、分别为试样中元素i在焙烧前、焙烧后、水洗后、氨浸后的质量分数。
钼精矿中的主要物质为MoS2,其中细粒度的钼精矿中MoS2含量更高,焙烧过程中MoS2与O2反应转化为MoO3,由二者的摩尔质量可知,钼精矿焙烧后质量减小,通过计算
MoO3与氨水可反应生成钼酸铵进入液相,杂质元素则保留在氨浸渣中随过滤除去,但氨浸过程仍有部分K可进入氨浸液,而氨浸渣中的Mo含量也不可忽视。通过计算得出不同粒度试样在氨浸前后Mo、K的质量变化,结果如

图9 不同粒径试样氨浸过程元素质量变化
Fig. 9 Mass changes of elements in samples with different particle sizes during ammonia leaching
根据
。 | (13) |
式中,为试样中i元素在氨浸过程的浸出率,%。通过计算可得,粗试样中Mo和K的浸出率分别为75.68%和6.39%,细试样中分别为60.56%和4.63%,因此,粒径对Mo和K元素浸出效果的影响较明显,粗试样中Mo和K的浸出能力相比细试样更强。多年生产经验表明,钼精矿焙烧过程通常都伴随着明显的烧结现象。经过焙烧和水洗后大部分MoO3可浸出到氨浸液中,剩余的少量MoO3由于在焙烧过程与杂质元素形成2.3中分析的3种混合物,最终无法与氨水接触。通过以上模拟实验中不同粒径的钼精矿在焙烧后形成产物的性质及特点,得到不同粒径钼精矿在焙烧过程中形成的局部烧结块对于氨浸效果的影响机理,其示意图如

图10 氨浸过程不同粒径试样中元素浸出机理示意图
Fig. 10 Leaching mechanism of elements in samples with different particle sizes during ammonia leaching process
由
1)典型杂质元素主要以大分子量的含钾矿物及FeS2、CaSO4、SiO2等形式赋存在钼精矿中,且粒度偏析现象明显。钼精矿中的FeS2、CaSO4、SiO2等杂质在焙烧过程中与MoO3结合形成低熔点混合物从而形成牢固的烧结颈,使杂质元素在水洗过程中不易被去除。合理控制钼精矿粒度和焙烧条件不仅可以增加杂质硅酸盐矿物向可溶性离子的转变从而降低钼产品杂质含量,还可以减少烧结颈范围进而提高Mo的浸出率。
2)钼精矿中的K主要来自于云母和正长石,且云母在焙烧过程中可分解生成正长石,该反应为吸热反应,须在727 K以上才可自发进行;焙烧过程中正长石可释放出可溶性钾,具体机理为:MoS2氧化产生的SO2在空气中反应生成气态H2SO4,H2SO4与CaF2接触后释放出HF,当焙烧结束且温度降至494 K后,气态HF开始与正长石晶格上的Si元素反应生成SiF4脱离固相,并与正长石中的K、Al反应生成KOH与Al(OH)3,二者与SO2反应生成可溶性硫酸盐,进而通过水洗去除。
3)较粗粒度的钼精矿经过焙烧后,Mo和K、Al、Si等杂质元素都相对更易浸出,主要是由于细粒度的钼精矿在焙烧过程中更容易形成致密且牢固的烧结颈,烧结颈大范围连接MoO3与FeS2、CaSO4或SiO2,从而使冷却后的烧结产物致密度增大,MoO3被包裹在烧结块中无法与氨水接触,只有外侧的可溶于氨水,从而降低了Mo的浸出率。
参考文献
Oncel L. Production of ferromolybdenum from mill scale via aluminothermic process[J]. Sinop Üniversitesi Fen Bilimleri Dergisi, 2020, 5(1): 64-76. [百度学术]
Sheybani K, Paydar M H, Shariat M H. Effect of mechanical activation on aluminothermic reduction of molybdenum trioxide[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82: 245-254. [百度学术]
秦玉楠. 三氧化钼除钾新工艺[J]. 中国钼业, 1996, 20(6): 32-33. [百度学术]
Qin Y N. New technology for removing potassium from molybdenum trioxide[J]. China Molybdenum Industry, 1996, 20(6): 32-33. (in Chinese) [百度学术]
Sun G D, Zhang G H, Jiao S Q, et al. Shape-controlled synthesis of ultrafine molybdenum crystals via salt-assisted reduction of MoO2 with H2[J]. The Journal of Physical Chemistry C, 2018, 122(18): 10231-10239. [百度学术]
唐军利. 一种钼酸铵溶液的降钾方法: CN107986332B[P]. 2019-09-03. [百度学术]
Tang J L. Potassium reducing method of ammonium molybdate solution: CN107986332B[P]. 2019-09-03. (in Chinese) [百度学术]
Wang L, Zhang G H, Wang J S, et al. Study on hydrogen reduction of ultrafine MoO2 to produce ultrafine Mo[J]. The Journal of Physical Chemistry C, 2016, 120(7): 4097-4103. [百度学术]
罗振中. 钼的应用及其发展[J]. 中国钼业, 2003, 27(2): 7-10. [百度学术]
Luo Z Z. Application and development of molybdenum[J]. China Molybdenum Industry, 2003, 27(2): 7-10. (in Chinese) [百度学术]
Jiang Y L, Liu B G, Liu P, et al. Dielectric properties and oxidation roasting of molybdenite concentrate by using microwave energy at 2.45 GHz frequency[J]. Metallurgical and Materials Transactions B, 2017, 48(6): 3047-3057. [百度学术]
Wang L, Zhang G H, Chou K C. Mechanism and kinetic study of hydrogen reduction of ultra-fine spherical MoO3 to MoO2[J]. International Journal of Refractory Metals and Hard Materials, 2016, 54: 342-350. [百度学术]
Shekhter L N, Litz J E, Shah N M, et al. Thermodynamic modelling of molybdenite roasting in a multiple-hearth furnace[J]. JOM, 2021, 73(3): 873-880. [百度学术]
Kan S, Benzeşik K, Odabaş Ö C, et al. Investigation of molybdenite concentrate roasting in chamber and rotary furnaces[J]. Mining, Metallurgy & Exploration, 2021, 38(3): 1597-1608. [百度学术]
陈艳芳, 谢敬佩, 苌清华, 等. 钼粉制备技术的研究进展[J]. 材料热处理学报, 2020, 41(7): 14-24. [百度学术]
Chen Y F, Xie J P, Chang Q H, et al. Research progress in preparation technology of molybdenum powder[J]. Transactions of Materials and Heat Treatment, 2020, 41(7): 14-24. (in Chinese) [百度学术]
王鹏飞. 钼焙砂氨浸渣中钼的回收工艺研究[D]. 西安: 西安建筑科技大学, 2020. [百度学术]
Wang P F. Study on molybdenum recovery from ammonia leaching residue of molybdenum calcine[D]. Xi’an: Xi’an University of Architecture and Technology, 2020. (in Chinese) [百度学术]
Liu J, Qiu Z F, Yang J, et al. Recovery of Mo and Ni from spent acrylonitrile catalysts using an oxidation leaching-chemical precipitation technique[J]. Hydrometallurgy, 2016, 164: 64-70. [百度学术]
唐军利, 曹维成, 唐丽霞, 等. 钼中除钾工艺综述[J]. 中国钼业, 2017, 41(3): 34-36, 39. [百度学术]
Tang J L, Cao W C, Tang L X, et al. Comprehensive discussion of the technology for potassium removing from molybdenum products[J]. China Molybdenum Industry, 2017, 41(3): 34-36, 39. (in Chinese) [百度学术]
成兰兴, 赵增兵, 赵怡丽, 等. 钼精矿一步除杂制备高纯二硫化钼新工艺[J]. 化学工程师, 2018, 32(11): 11-13. [百度学术]
Cheng L X, Zhao Z B, Zhao Y L, et al. Preparation of high purity molybdenum disulfide by one stage purification from molybdenum concentrate[J]. Chemical Engineer, 2018, 32(11): 11-13. (in Chinese) [百度学术]
高正丽, 解小锋, 惠三顺. 二硫化钼新型降杂生产方法[J]. 中国钼业, 2019, 43(1): 42-45. [百度学术]
Gao Z L, Xie X F, Xi S S. New method for reducing impurity of molybdenum disulfide[J]. China Molybdenum Industry, 2019, 43(1): 42-45. (in Chinese) [百度学术]
Aracena A, Sanino A, Jerez O. Dissolution kinetics of molybdite in KOH media at different temperatures[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(1): 177-185. [百度学术]
Yang L Q, Li X B, Qi T G, et al. Direct synthesis of pure ammonium molybdates from ammonium tetramolybdate and ammonium bicarbonate[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 18237-18244. [百度学术]
唐丽霞, 厉学武, 刘东新. 钼精矿焙烧过程中含钾矿物可溶性变化机理浅析[J]. 中国钼业, 2016, 40(5): 42-43, 49. [百度学术]
Tang L X, Li X W, Liu D X. Soluble potassium change mechanism analysis in the process of roasting molybdenum concentrate mineral[J]. China Molybdenum Industry, 2016, 40(5): 42-43, 49. (in Chinese) [百度学术]
Yi G S, Macha E, van Dyke J, et al. Recent progress on research of molybdenite flotation: a review[J]. Advances in Colloid and Interface Science, 2021, 295: 102466. [百度学术]
Shalchian H, Khaki J V, Babakhani A, et al. An enhanced dissolution rate of molybdenite and variable activation energy[J]. Hydrometallurgy, 2018, 175: 52-63. [百度学术]
吴蓬, 吕宪俊, 胡术刚, 等. 粒化高炉矿渣成分和细度对活性的影响[J]. 硅酸盐通报, 2014, 33(10): 2572-2577. [百度学术]
Wu P, Lv X J, Hu S G, et al. Influence of composition and fineness of granulated blast furnace slags on activation index[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(10): 2572-2577. (in Chinese) [百度学术]
Briki Y, Zajac M, Haha M B, et al. Impact of limestone fineness on cement hydration at early age[J]. Cement and Concrete Research, 2021, 147: 106515. [百度学术]
Wang L, Zhang G H, Wang J S, et al. Influences of different components on agglomeration behavior of MoS2 during oxidation roasting process in air[J]. Metallurgical and Materials Transactions B, 2016, 47(4): 2421-2432. [百度学术]
Lü L, Li C, Zhang G Q, et al. Decomposition behavior of CaSO4 during potassium extraction from a potash feldspar-CaSO4 binary system by calcination[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 838-844. [百度学术]
Yuan J Y, Yang J, Ma H W, et al. Green synthesis of nano-muscovite and niter from feldspar through accelerated geomimicking process[J]. Applied Clay Science, 2018, 165: 71-76. [百度学术]
刘佳囡, 曹诗圆, 常龙娇, 等. 我国钾长石研究现状综述[J]. 渤海大学学报(自然科学版), 2019, 40(4): 315-320. [百度学术]
Liu J N, Cao S Y, Chang L J, et al. Summarization of research status of potash feldspar in China[J]. Journal of Bohai University (Natural Science Edition), 2019, 40(4): 315-320. (in Chinese) [百度学术]
Yuan J Y, Yang J, Ma H W, et al. Hydrothermal synthesis of nano-kaolinite from K-feldspar[J]. Ceramics International, 2018, 44(13): 15611-15617. [百度学术]
张晓慢, 雍倩禧, 祁梦瑶, 等. 钾长石提钾技术进展[J]. 矿产保护与利用, 2020, 40(4): 172-178. [百度学术]
Zhang X M, Yong Q X, Qi M Y, et al. Status and prospect of potassium extracting from potassium feldspar[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 172-178. (in Chinese) [百度学术]
Liu C J, Ma H W. Hydrothermal decomposition process of K-feldspar in NaOH solution[J]. Asia-Pacific Journal of Chemical Engineering, 2021, 16(1): e2578. [百度学术]
Liu J N, Zhai Y C, Wu Y, et al. Kinetics of roasting potash feldspar in presence of sodium carbonate[J]. Journal of Central South University, 2017, 24(7): 1544-1550. [百度学术]
薛彦辉, 周广柱, 张桂斋. 钾长石-萤石-硫酸体系中分解钾长石的探讨[J]. 化学与生物工程, 2004, 21(2): 25-27. [百度学术]
Xue Y H, Zhou G Z, Zhang G Z. The potassium-feldspar-fluorite-sulfuric acid system inside to resolve the studying of the potassium-feldspar[J]. Chemistry & Bioengineering, 2004, 21(2): 25-27. (in Chinese) [百度学术]
Wang L, Zhang G H, Chou K C. Study on oxidation mechanism and kinetics of MoO2 to MoO3 in air atmosphere[J]. International Journal of Refractory Metals and Hard Materials, 2016, 57: 115-124. [百度学术]
王璐, 李梦超, 阙标华, 等. 辉钼精矿的氧化焙烧[J]. 中国有色金属学报, 2021, 31(7): 1952-1964. [百度学术]
Wang L, Li M C, Que B H, et al. Oxidation roasting of molybdenite concentrate[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(7): 1952-1964. (in Chinese) [百度学术]
McCarty K F, Hamilton J C, Boehme D R, et al. In situ Raman spectroscopy of high temperature pyrite reactions related to deposit formation from coal[J]. Journal of the Electrochemical Society, 1989, 136(4): 1223-1229. [百度学术]
Pelovski Y, Petkova V. Investigation on thermal decomposition of FeS2 and BaO2 mixtures part II[J]. Journal of Thermal Analysis and Calorimetry, 1999, 56(1): 101-108. [百度学术]
Hausen D M. Reversible reactions between pyrite and pyrrhotite in SO2[J]. JOM, 1991, 43(4): 31-34. [百度学术]