摘要
大型风电机组传动链转动惯量大,在随机风速作用下低频扭振风险高,而传统基于确定扭转速度控制目标的传动链扭振控制方法未考虑因测量设备引起的随机测量噪声对扭转速度的影响,可能导致控制性能下降。针对扭转速度测量不确定性,提出了大型风电机组传动链扭振自抗扰控制方法,设计了KF-ADRC扭振控制器,通过卡尔曼滤波动态估计传动链扭转速度,并以扭转速度为零作为ADRC控制目标,控制发电机电磁转矩,抑制传动链低频扭振。研究结果表明:当常规的扭振控制器输入信号存在随机测量噪声时,会显著降低其对传动链低频扭振的抑制性能,而KF-ADRC扭振控制器在输入信号存在测量噪声时可有效预估传动链扭转速度,较好地实现了传动链低频扭振抑制效果。
风电机组是目前最有效开发风资源的重大工程装备之一。为进一步降低风资源开发成本,风电机组正朝着大功率、巨型化发展,这也导致了风电机组部件大惯量、柔性化,增大了风电机组传动链低频扭振风
近年来,国内外学者针对传动链扭振控制开展了大量研究。Mandic
为此,国内外部分学者针对模型参数难以准确获取的风电机组传动链扭振抑制问题,将ADRC引入到传动链扭振抑制中,开展了ADRC对传动链扭振抑制的研究。自抗扰控制器(active disturbance rejection control, ADRC
针对扭转速度测量不确定因素,提出了KF-ADRC扭振控制器,通过卡尔曼滤波动态估计传动链扭转速度,以扭转速度为零作为ADRC控制目标,控制发电机电磁转矩,对比分析了当输入信号存在随机测量噪声时KF-ADRC对传动链扭振的抑制效果。

图1 风电机组系统组成
Fig. 1 Wind turbine system composition

图2 风电机组运行区域
Fig. 2 Wind turbine operating area
当风扫掠过风轮时,风轮获得的功率
![]() | (1) |
通过风电机组产生的功率可以得到风轮所受气动转矩为
![]() | (2) |
式中:R代表风轮半径;代表风速;代表空气密度;为风能利用系数,其值大小与叶尖速比、桨距角有关;为风电机组风轮转速。
风电机组为典型的气-弹-水-控耦合系统,整机模型计算成本高,因此控制系统的有效性验证通常通过简化模型验证,主要包括单质量块模型、两质量块模型和多质量块模
(3) |
式中:和C分别为传动链刚度、阻尼;N为传动比;分别为风轮端与发电机端的角位移;和分别为齿轮箱低速轴与高速轴转矩;和分别为传动链风轮端、发电机端转动惯量;为发电机端角速度;和分别为传动链风轮端角加速度与发电机端角加速度扰动产生的过程噪声。

图3 风电机组传动链两质量块模型
Fig. 3 Two-mass model of wind turbine drivetrain
为观测传动链扭振情况,传动链扭转速度记为,为传动链扭振趋势;传动链扭转位移记为,为传动链扭振强度
(4) |
在额定风速以下,使用最优转矩法控制风轮转速将叶尖速比保持在最佳
(5) |
式中:为最大风能利用系数;代表最佳叶尖速比;为发电机时间常数。
在额定风速以上,通过改变桨距角维持风电机组工作在额定转速附
(6) |
式中:为实际的桨距角;为期望的桨距角;为变桨执行系统时间常数。
在实际工程中,传动链扭转速度的测量需通过测量高速轴转速、低速轴转速、齿轮箱传动比,由
根据
(7) |
式中:与分别代表过程噪声与测量噪声(均值为0的白噪声);协方差矩阵分别为Q与R;;;;。
根据零阶保持器将
(8) |
式中:;;;T为系统采样时间。
为使估计值与真实值误差最小,需求解最小估计误差协方差矩阵,为
(9) |
设置相应状态初始值及初始误差协方差P0,并进行时间更新,计算先验状态值与先验误差协方差,为
(10) |
式中:为k时刻的先验状态值;为k时刻的先验误差协方差矩阵。
根据估计状态值与实际值,计算卡尔曼增益
(11) |
通过卡尔曼增益对系统进行校正,对状态值进行后验估计并更新误差协方差矩阵
(12) |

图4 非线性ADRC扭振控制器
Fig. 4 Non-linear ADRC torsional vibration controller
为分析传动链刚度、阻尼、转动惯量以及外部输入对于传动链扭振的影响,由
(13) |
式中,代表传动链外部扰动。根据
(14) |
式中,f代表系统内外部扰动之和,其表达式
(15) |
建立ESO数学模型
(16) |
式中:为ESO输入;为可调参数;为正数;为非线性函数,如
(17) |
为了解决控制过程中超调与快速性的矛盾,建立关于控制目标的TD
(18) |
式中:r为速度因子;为滤波因子。由于控制目标,经过TD模块后得到的也为0,故也可在控制器中取消TD模块。
建立NLSEF数学模型得到初始电磁转矩T0为
(19) |
式中,分别为比例增益与微分增益。
通过扰动前馈补偿方式将ESO观测到的系统总扰动实时补偿到初始电磁转矩T0中,得到ADRC的输出转矩实际控制量为
(20) |
使用自适应遗传算法对ADRC参数进行整
(21) |
式中:u为控制力;、为相应的权系数。

图5 风电机组传动链KF-ADRC控制框图
Fig. 5 KF-ADRC control block diagram of the wind turbine drivetrain
以某型兆瓦级漂浮式风电机组传动链为仿真对象,参数如
vcut-in/(m· | vcut-out/(m· | vrate/(m· | R/m | Jr/(kg· | Jg/(kg· | N |
---|---|---|---|---|---|---|
3.5 | 25 | 11.7 | 76 |
7.351 | 313 | 107.01 |

图6 16 m/s A级时序湍流风
Fig. 6 16 m/s Class A time series turbulent wind
定义标准测量噪声为输入信号标准差的10%,输入信号标准差20%的测量噪声定义为大噪

图7 无测量噪声下扭转速度预估
Fig. 7 Prediction of torsion speed without measurement noise

图8 不同测量噪声下的传动链扭转速度预估效果
Fig. 8 Estimated effect of torsion speed of drivetrain under different measurement noises

图9 不同测量噪声水平下的传动链扭转速度预估精度
Fig. 9 Estimated accuracy under different measurement noise levels

图10 不同控制策略下控制效果对比
Fig. 10 Comparison of control effects under different control strategies
控制器类型 | 低速轴转矩/(kN·m) | 功率/kW | ||||||
---|---|---|---|---|---|---|---|---|
最大值 | 最小值 | 平均值 | 标准差 | 最大值 | 最小值 | 平均值 | 标准差 | |
Baseline | 5 846.2 | 4 872.7 | 5 272.6 | 149.5 | 6 617.0 | 5 892.8 | 6 244.0 | 132.8 |
ADRC | 5 861.5 | 4 747.5 | 5 273.4 | 160.7 | 6 627.8 | 5 798.3 | 6 244.1 | 166.9 |
KF-ADRC | 5 643.6 | 4 960.5 | 5 273.5 | 111.5 | 6 627.8 | 5 809.1 | 6 244.4 | 150.2 |
为了进一步分析KF-ADRC扭振控制器对输入信号中测量噪声的敏感性,分别对比了当输入信号存在标准噪声与大噪声时,KF-ADRC控制器、ADRC控制器相比于未加扭振控制器的传动链低速轴转矩和功率变化情况,如
噪声类型 | 低速轴转矩标准差百分比 | 功率标准差百分比 | ||
---|---|---|---|---|
ADRC | KF-ADRC | ADRC | KF-ADRC | |
标准噪声 | -24.8 | -25.4 | +25.9 | +11.0 |
大噪声 | +7.6 | -25.4 | +25.7 | +13.1 |
针对测量噪声引起的扭转速度测量不确定性,提出了KF-ADRC扭振控制方法,分析了KF-ADRC的输入信号在不同测量噪声影响下其对传动链低频扭振的抑制效果,主要结论如下:
1)当常规的传动链扭振控制器输入信号存在测量噪声时,会降低其扭振抑制性能,并且随着测量噪声的增大,对传动链的扭振抑制会出现不降反增的现象。
2)KF-ADRC扭振控制器在输入信号存在不同测量噪声时可以有效预估传动链扭转速度,抑制传动链扭振,相比于无扭振控制器时传动链低速轴转矩标准差降低了25.4%,且对功率的影响较小。
参考文献
Rahman M, Ong Z C, Chong W T, et al. Performance enhancement of wind turbine systems with vibration control: a review[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 43-54. [百度学术]
李辉, 胡玉, 柴兆森, 等. 随机风载荷对双馈风电机组轴系扭振响应分析[J]. 太阳能学报, 2020, 41(5): 174-181. [百度学术]
Li H, Hu Y, Chai Z S, et al. Analysis on shaft torsional vibration responses of doubly fed induction generators under stochastic wind load[J]. Acta Energiae Solaris Sinica, 2020, 41(5): 174-181.(in Chinese) [百度学术]
秦大同, 鲁迪, 陈锐博, 等. 随机风速下风电传动系统机电耦合动态特性分析[J]. 太阳能学报, 2020, 41(11): 326-333. [百度学术]
Qin D T, Lu D, Chen R B, et al. Electromechanical coupling dynamic characteristic analysis of wind turbine transmission system under random wind speed[J]. Acta Energiae Solaris Sinica, 2020, 41(11): 326-333.(in Chinese) [百度学术]
姚骏, 曾欣, 李嘉伟. 并网双馈感应风电系统轴系振荡特性[J]. 电工技术学报, 2017, 32(6): 123-135. [百度学术]
Yao J, Zeng X, Li J W. Shaft oscillation characteristics of grid-connected doubly-fed induction generator-based wind power generation system[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 123-135.(in Chinese) [百度学术]
Mandic G, Nasiri A, Muljadi E, et al. Active torque control for gearbox load reduction in a variable-speed wind turbine[J]. IEEE Transactions on Industry Applications, 2012, 48(6): 2424-2432. [百度学术]
Licari J, Ugalde-Loo C E, Ekanayake J B, et al. Damping of torsional vibrations in a variable-speed wind turbine[J]. IEEE Transactions on Energy Conversion, 2013, 28(1): 172-180. [百度学术]
Zhu H Z, Yoshida S. Disturbance observer-based torsional vibration damper for variable-speed wind turbines[J]. IFAC Journal of Systems and Control, 2020, 14: 100112. [百度学术]
贾锋, 陈雷, 符杨, 等. 湍流激励下风电轴系的宽频受迫扭振及其抑制方法[J]. 中国电机工程学报, 2021, 41(19):6591-6601. [百度学术]
Jia F, Chen L, Fu Y, et al. The forced wide frequency-band torsional vibration of WECS drive train under turbulence wind and its suppression method[J]. Proceedings of the CSEE,2021,41(19):6591-6601.(in Chinese) [百度学术]
Fateh F, White W N, Gruenbacher D. Torsional vibrations mitigation in the drivetrain of DFIG-based grid-connected wind turbine[J]. IEEE Transactions on Industry Applications, 2017, 53(6): 5760-5767. [百度学术]
Karunanayake C, Ravishankar J, Dong Z Y. A novel torsional vibration mitigation strategy for DFIG based wind turbines[C]//2019 7th International Conference on Smart Grid (icSmartGrid). IEEE, 2020: 27-32. [百度学术]
Liu J, Zhou F, Zhao C, et al. Mechanism analysis and suppression strategy research on permanent magnet synchronous generator wind turbine torsional vibration[J]. ISA Transactions, 2019, 92: 118-133. [百度学术]
韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19-23. [百度学术]
Han J Q. Auto-disturbances-rejection controller and its applications[J]. Control and Decision, 1998, 13(1): 19-23.(in Chinese) [百度学术]
Huang Y, Han J Q. Analysis and design for the second order nonlinear continuous extended states observer[J]. Chinese Science Bulletin, 2000, 45(21): 1938-1944. [百度学术]
姚兴佳, 王晓东, 单光坤, 等. 双馈风电机组传动系统扭振抑制自抗扰控制[J]. 电工技术学报, 2012, 27(1): 136-141. [百度学术]
Yao X J, Wang X D, Shan G K, et al. Torque vibration active disturbance rejection control of double-fed wind turbine drive train[J]. Transactions of China Electrotechnical Society, 2012, 27(1): 136-141.(in Chinese) [百度学术]
葛帅帅, 秦大同, 胡明辉, 等. 基于自抗扰转矩补偿的采煤机截割传动系统动载荷主动控制[J]. 机械工程学报, 2018, 54(15): 31-40. [百度学术]
Ge S S, Qin D T, Hu M H, et al. Active control on dynamic loads of the drum shearer cutting transmission system based on active disturbance rejection torque compensation[J]. Journal of Mechanical Engineering, 2018, 54(15): 31-40.(in Chinese) [百度学术]
Ren L N, Mao C H, Song Z Y, et al. Study on active disturbance rejection control with actuator saturation to reduce the load of a driving chain in wind turbines[J]. Renewable Energy, 2019, 133: 268-274. [百度学术]
Madonski R, Ramirez-Neria M, Stanković M, et al. On vibration suppression and trajectory tracking in largely uncertain torsional system: an error-based ADRC approach[J]. Mechanical Systems and Signal Processing, 2019, 134: 106300. [百度学术]
Pourseif T, Afzalian A. Pitch angle control of wind turbine systems in cold weather conditions using μ robust controller[J]. International Journal of Energy and Environmental Engineering, 2017, 8(3): 197-207. [百度学术]
Tomás Rodríguez M, Santos M. Modelado y control de turbinas eólicas marinas flotantes[J]. Revista Iberoamericana De Automática e Informática Industrial, 2019, 16(4): 381-390. [百度学术]
Abouzeid S I, Guo Y, Zhang H C. A frequency response strategy for variable speed wind turbine based on a dynamic inertial response and tip-speed ratio control[J]. Electrical Engineering, 2019, 101(1): 35-44. [百度学术]
Muyeen S M, Ali M H, Takahashi R, et al. Comparative study on transient stability analysis of wind turbine generator system using different drive train models[J]. IET Renewable Power Generation, 2007, 1(2): 131. [百度学术]
Tabesh A, Iravani R. Transient behavior of a fixed-speed grid-connected wind farm[C]// International Conference on Power Systems Transients. Montreal, Canada, IEEE, 2005: 1-5. [百度学术]
Azizi A, Nourisola H, Shoja-Majidabad S. Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller[J]. Renewable Energy, 2019, 135: 55-65. [百度学术]
Smilden E, Horn J T H, Sørensen A J, et al. Reduced order model for control applications in offshore wind turbines[J]. IFAC-PapersOnLine, 2016, 49(23): 386-393. [百度学术]
陈旭, 朱才朝, 宋朝省, 等. 紧急停机工况下风力发电机系统动态特性分析[J]. 机械工程学报, 2019, 55(5): 82-88. [百度学术]
Chen X, Zhu C C, Song C S, et al. Dynamic characteristics analysis of wind turbine under emergency shutdown events[J]. Journal of Mechanical Engineering, 2019, 55(5): 82-88.(in Chinese) [百度学术]
王诗琪, 杜雪松, 朱才朝, 等. 海上浮式风电机组变桨距自抗扰控制策略研究[J]. 重庆大学学报, 2022, 45(10):25-37. [百度学术]
Wang S Q, Du X S, Zhu C C, et al. Research on adrc for pitch control of offshore floating wind turbine[J]. Journal of Chongqing University, 2022, 45(10):25-37. (in Chinese) [百度学术]
陈文英, 褚福磊, 阎绍泽. 基于自适应遗传算法分步优化设计智能桁架结构自抗扰振动控制器[J]. 机械工程学报, 2010, 46(7): 74-81. [百度学术]
Chen W Y, Chu F L, Yan S Z. Stepwise optimal design of active disturbances rejection vibration controller for intelligent truss structure based on adaptive genetic algorithm[J]. Journal of Mechanical Engineering, 2010, 46(7): 74-81.(in Chinese) [百度学术]
Wang X, Gao W Z, Scholbrock A, et al. Evaluation of different inertial control methods for variable-speed wind turbines simulated by fatigue, aerodynamic, structures and turbulence (FAST)[J]. IET Renewable Power Generation, 2017, 11(12): 1534-1544. [百度学术]
Branlard E, Giardina D, Brown C S D. Augmented Kalman filter with a reduced mechanical model to estimate tower loads on a land-based wind turbine: a step towards digital-twin simulations[J]. Wind Energy Science, 2020, 5(3): 1155-1167. [百度学术]
Li J, Xia Y Q, Qi X H, et al. On the necessity, scheme, and basis of the linear-nonlinear switching in active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1425-1435. [百度学术]
Zheng Q, Gao L Q, Gao Z Q. On validation of extended state observer through analysis and experimentation[J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(2): 024505. [百度学术]
Bai W Y, Xue W C, Huang Y, et al. On extended state based Kalman filter design for a class of nonlinear time-varying uncertain systems[J]. Science China Information Sciences, 2018, 61(4): 042201. [百度学术]