摘要
提出了钢筋混凝土(RC)剪力墙弯矩-转角三折线骨架模型,给出了关键点的计算方法。计算了105片RC剪力墙的截面有效刚度和峰值转角,并与试验值对比,验证了模型的准确性。采用OpenSees软件中可以考虑强度与刚度退化的修正的 Ibarra-Medina-Krawinkler (ModIMK)滞回材料定义滞回规则,对钢筋混凝土剪力墙低周往复试验进行数值模拟与分析,模拟结果和试验非常吻合。与可以考虑弯剪耦合效应(shear-flexure interaction model, SFI)的模型的时程分析对比结果表明滞回模型可以有效预测框架剪力墙在地震作用下的响应。增量动力分析(incremental dynamic analysis, IDA)表明滞回模型可以有效预测剪力墙在地震作用下的倒塌行为,倒塌时的层间位移角比纤维模型小。
钢筋混凝土剪力墙因具有较大的抗侧刚度,能有效控制结构水平位移,而广泛应用于高层与超高层建筑结构中。虽然高层结构总体抗震性能良好,但是在历次大地震中高层结构出现严重损坏的案例也屡见不鲜,在2010年智利地
对剪力墙受力行为的模拟可以有很多方法,在OpenSees中可以采用纤维梁柱单元来模拟,该模型能较好地考虑弯矩和轴力的耦合,但是不能直接考虑剪切变形,一般要结合另外的单元来模拟剪切变
对于剪力墙变形能力的计算方法已经有了较多的研究。Abdullah
在上述相关研究的基础上,笔者提出剪力墙构件的恢复力模型,骨架曲线用弯矩-转角三折线模型来定义。收集了105片剪力墙试验数据,提出了考虑剪跨比影响的有效刚度计算公式,研究了受弯承载力最大值计算方法,对现有的剪力墙变形能力计算模型进行评估,对于承载力和刚度退化行为,采用OpenSees中成熟ModIMK滞回规则进行模拟。提出的恢复力模型可以直接用于模拟剪力墙从弹性到弹塑性,以及最后进入软化段全过程的非线性变形行为。与精细的SFI模型和分层壳模型进行比较表明,文中提出的模型有足够的精度,计算效率高收敛性好,并通过增量动力分析(incremental dynamic analysis, IDA)来进一步验证该模型的有效性。
剪力墙在侧向荷载作用随着侧向荷载的增加,墙体经历混凝土开裂和钢筋屈服等过程,侧向荷载达到最大值后逐步下降,墙体发生破坏。这一过程可以简化为三折线模型,如

图1 剪力墙弯矩-转角骨架曲线
Fig. 1 Moment-Angle skeleton curve of shear wall
当剪力墙剪跨比变小时,剪切变形占比会逐渐增加,可以通过减小
, | (4) |
式中:EcIg为剪力墙毛截面刚度,Ig=bwl
。 | (5) |
由
Li
。 | (6) |
同样的heff/lw从1.5增加到3,EcIeff/EcIg从0.12增加到0.29。可以看出在剪跨比较小时,
Haselton
,。 | (7) |
为了验证截面有效刚度计算方法,笔者对国内外试验结果进行总结。选择矩形截面两端有约束边缘的试件,端部约束区箍筋间距不超过100 mm,箍筋间距与纵筋直径比值不超过10,以保证塑性变形区有较好的约束。共收集了105片剪力墙试验结果,剪跨比范围为1.0~6.0,轴压比范围为0~0.51,基本涵盖了剪力墙工程参数常用范围。对于每个试件,用OpenSees建立剪力墙的纤维模型,通过截面分析,提取墙截面最外侧混凝土压应变达到0.004时的截面弯矩作为屈服弯矩理论值My;根据试验屈服位移,通过
数据来源 | 试件编号 | lw/ mm | bw/ mm | heff/ mm | n | heff/lw | My理论/ (kN·m) | θy试验/% | EcIeff/EcIg试验 | EcIeff/ EcIg计算 | EcIeff/EcIg计算/实验 | Mc试验/ (kN·m) | Mc试验/My理论 | θu试验/% | θu计算/% | θu计算/θu试验 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
文献[ | W1 | 700 | 100.0 | 1 750 | 0.15 | 2.5 | 218.6 | 0.84 | 0.20 | 0.27 | 1.31 | 252.5 | 1.16 | 2.70 | 2.57 | 0.95 |
W2 | 700 | 100.0 | 1 750 | 0.25 | 2.5 | 248.3 | 0.42 | 0.46 | 0.32 | 0.69 | 290.5 | 1.17 | 1.80 | 2.29 | 1.27 | |
W3 | 700 | 100.0 | 1 750 | 0.35 | 2.5 | 256.2 | 0.42 | 0.48 | 0.36 | 0.76 | 324.8 | 1.27 | 1.50 | 2.10 | 1.40 | |
文献[ | WHS2 | 2 000 | 150.0 | 4 560 | 0.06 | 2.3 | 992.1 | 0.24 | 0.20 | 0.18 | 0.91 | 1 639.0 | 1.65 | 1.70 | 2.92 | 1.72 |
WHS3 | 2 000 | 150.0 | 4 560 | 0.06 | 2.3 | 1 379.0 | 0.35 | 0.19 | 0.18 | 0.91 | 2 072.0 | 1.50 | 2.03 | 2.67 | 1.31 | |
WHS5 | 2 000 | 150.0 | 4 520 | 0.13 | 2.3 | 1 508.1 | 0.24 | 0.30 | 0.22 | 0.75 | 2 002.0 | 1.33 | 1.50 | 2.25 | 1.50 | |
WSH6 | 2 000 | 150.0 | 4 520 | 0.11 | 2.3 | 1 823.8 | 0.39 | 0.21 | 0.21 | 1.01 | 2 724.0 | 1.49 | 2.00 | 2.27 | 1.13 | |
文献[ | HPCW01 | 1 000 | 100.0 | 2 100 | 0.12 | 2.1 | 540.9 | 0.57 | 0.21 | 0.23 | 1.14 | 685.2 | 1.27 | 2.04 | 2.15 | 1.05 |
HPCW02 | 1 000 | 100.0 | 2 100 | 0.10 | 2.1 | 574.3 | 0.60 | 0.19 | 0.23 | 1.20 | 698.5 | 1.22 | 2.50 | 2.28 | 0.91 | |
HPCW03 | 1 000 | 100.0 | 2 100 | 0.13 | 2.1 | 712.2 | 0.59 | 0.24 | 0.24 | 1.02 | 796.5 | 1.12 | 2.43 | 1.91 | 0.79 | |
HPCW04 | 1 000 | 100.0 | 2 100 | 0.12 | 2.1 | 751.0 | 0.61 | 0.22 | 0.23 | 1.04 | 777.6 | 1.04 | 2.70 | 1.98 | 0.73 | |
文献[ | W3 | 1 000 | 152.0 | 3 750 | 0.10 | 3.5 | 1 179.2 | 1.12 | 0.34 | 0.28 | 0.84 | 1 256.3 | 1.07 | 3.30 | 2.82 | 0.85 |
文献[ | W4 | 700 | 75.0 | 1 600 | 0.20 | 2.5 | 159.5 | 0.62 | 0.25 | 0.28 | 1.12 | 150.3 | 0.94 | 1.63 | 1.29 | 0.79 |
W5 | 700 | 100.0 | 1 330 | 0.15 | 1.9 | 182.5 | 0.43 | 0.22 | 0.22 | 1.01 | 254.0 | 1.39 | 1.75 | 2.28 | 1.30 | |
W6 | 700 | 100.0 | 1 600 | 0.11 | 2.5 | 140.8 | 0.42 | 0.24 | 0.23 | 0.98 | 220.8 | 1.57 | 2.14 | 2.72 | 1.27 | |
W7 | 700 | 100.0 | 1 600 | 0.15 | 2.5 | 196.4 | 0.50 | 0.28 | 0.25 | 0.91 | 238.4 | 1.21 | 2.36 | 2.40 | 1.02 | |
W8 | 700 | 100.0 | 1 600 | 0.15 | 2.5 | 196.4 | 0.59 | 0.24 | 0.25 | 1.06 | 249.6 | 1.27 | 2.72 | 2.40 | 0.88 | |
W9 | 700 | 100.0 | 1 600 | 0.15 | 2.5 | 196.4 | 0.48 | 0.29 | 0.25 | 0.86 | 232.0 | 1.18 | 2.68 | 2.40 | 0.90 | |
文献[ | W1 | 1 200 | 200.0 | 3 720 | 0.08 | 3.1 | 960.9 | 0.49 | 0.32 | 0.25 | 0.79 | 990.3 | 1.03 | 3.00 | 3.28 | 1.09 |
W2 | 1 200 | 200.0 | 3 720 | 0.04 | 3.1 | 978.2 | 0.48 | 0.23 | 0.22 | 0.98 | 1 040.9 | 1.06 | 2.90 | 3.49 | 1.20 | |
文献[ | C1 | 1 400 | 150.0 | 2 800 | 0.04 | 2.0 | 451.8 | 0.19 | 0.21 | 0.24 | 1.13 | 490.2 | 1.08 | 2.60 | 3.26 | 1.25 |
C2 | 1 400 | 150.0 | 5 600 | 0.04 | 4.0 | 433.2 | 0.19 | 0.22 | 0.33 | 1.51 | 498.8 | 1.15 | 2.50 | 3.40 | 1.36 | |
C3 | 1 400 | 150.0 | 8 400 | 0.04 | 6.0 | 441.1 | 0.19 | 0.21 | 0.35 | 1.67 | 474.5 | 1.08 | 2.60 | 3.46 | 1.33 | |
C5 | 1 400 | 150.0 | 2 800 | 0.08 | 2.0 | 588.5 | 0.21 | 0.26 | 0.25 | 0.97 | 664.4 | 1.13 | 2.50 | 2.99 | 1.20 | |
C6 | 1 400 | 150.0 | 5 600 | 0.04 | 4.0 | 442.4 | 0.19 | 0.21 | 0.33 | 1.57 | 504.6 | 1.14 | 2.50 | 3.41 | 1.36 | |
M1 | 1 400 | 150.0 | 5 600 | 0.04 | 4.0 | 565.6 | 0.24 | 0.21 | 0.27 | 1.28 | 601.4 | 1.06 | 2.80 | 3.39 | 1.21 | |
M2 | 1 400 | 150.0 | 5 600 | 0.04 | 4.0 | 604.4 | 0.24 | 0.23 | 0.28 | 1.20 | 668.6 | 1.11 | 3.80 | 3.37 | 0.89 | |
M3 | 1 400 | 150.0 | 5 600 | 0.04 | 4.0 | 516.1 | 0.23 | 0.20 | 0.28 | 1.38 | 560.8 | 1.09 | 3.40 | 3.40 | 1.00 | |
M4 | 1 400 | 150.0 | 5 600 | 0.04 | 4.0 | 604.2 | 0.22 | 0.25 | 0.30 | 1.20 | 630.7 | 1.04 | 3.80 | 3.38 | 0.89 | |
文献[ | R2 | 1 910 | 102.0 | 4 570 | 0 | 2.4 | 899.2 | 0.46 | 0.16 | 0.18 | 1.14 | 989.9 | 1.10 | 2.80 | 3.13 | 1.12 |
B3 | 1 910 | 102.0 | 4 570 | 0 | 2.4 | 857.4 | 0.40 | 0.17 | 0.18 | 1.07 | 1 260.3 | 1.47 | 4.40 | 3.12 | 0.71 | |
文献[ | WR10 | 1 500 | 200.0 | 3 000 | 0.10 | 2.0 | 1 058.2 | 0.31 | 0.18 | 0.21 | 1.21 | 1 275.9 | 1.21 | 2.90 | 2.72 | 0.94 |
文献[ | WP1 | 2 286 | 152.4 | 8 560 | 0.10 | 3.7 | 3 415.0 | 0.66 | 0.33 | 0.26 | 0.78 | 3 642.9 | 1.07 | 2.00 | 2.10 | 1.05 |
WP2 | 2 286 | 152.4 | 8 560 | 0.09 | 3.7 | 3 534.9 | 0.71 | 0.29 | 0.25 | 0.86 | 3 796.1 | 1.07 | 2.20 | 2.24 | 1.02 | |
WP3 | 2 286 | 152.4 | 8 560 | 0.08 | 3.7 | 3 454.4 | 0.60 | 0.33 | 0.24 | 0.72 | 3 840.8 | 1.11 | 2.50 | 2.35 | 0.94 | |
WP4 | 2 286 | 152.4 | 13 487 | 0.07 | 5.9 | 4 798.1 | 0.81 | 0.52 | 0.25 | 0.48 | 5 627.7 | 1.17 | 2.00 | 2.57 | 1.28 | |
WP6 | 2 286 | 229.0 | 8 170 | 0.08 | 3.6 | 4 544.5 | 0.70 | 0.23 | 0.25 | 1.10 | 4 754.6 | 1.05 | 4.10 | 3.08 | 0.75 | |
WP7 | 2 286 | 229.0 | 8 000 | 0.07 | 3.5 | 4 722.2 | 0.70 | 0.23 | 0.24 | 1.06 | 5 698.2 | 1.21 | 4.20 | 3.12 | 0.74 | |
文献[ | C10 | 2 250 | 200.0 | 10 350 | 0.10 | 4.6 | 4 276.3 | 0.49 | 0.19 | 0.26 | 1.40 | 4 622.0 | 1.14 | 3.10 | 2.77 | 0.89 |
A10 | 2 250 | 200.0 | 10 350 | 0.10 | 4.6 | 4 276.3 | 0.49 | 0.19 | 0.26 | 1.40 | 4 580.0 | 1.13 | 3.10 | 2.78 | 0.90 | |
A14 | 2 250 | 200.0 | 10 350 | 0.14 | 4.6 | 4 435.4 | 0.64 | 0.18 | 0.30 | 1.63 | 5 420.0 | 1.22 | 2.50 | 2.63 | 1.05 | |
A20 | 2 250 | 200.0 | 10 350 | 0.20 | 4.6 | 4 580.2 | 0.43 | 0.27 | 0.35 | 1.26 | 6 154.0 | 1.34 | 2.00 | 2.37 | 1.18 | |
文献[ | SWW1 | 400 | 80.0 | 1 577 | 0.26 | 4.1 | 88.8 | 0.78 | 0.39 | 0.42 | 1.06 | 105.0 | 1.18 | 2.20 | 2.20 | 1.00 |
SWW2 | 400 | 80.0 | 1 577 | 0.51 | 4.1 | 105.2 | 0.64 | 0.62 | 0.58 | 0.93 | 125.0 | 1.19 | 1.40 | 1.65 | 1.18 | |
SWW3 | 400 | 80.0 | 1 577 | 0.51 | 4.1 | 106.9 | 0.66 | 0.61 | 0.58 | 0.94 | 128.0 | 1.20 | 1.30 | 1.64 | 1.26 | |
文献[ | RW1 | 1 220 | 101.6 | 3 660 | 0.11 | 3.1 | 436.3 | 0.34 | 0.36 | 0.28 | 0.79 | 535.0 | 1.23 | 2.20 | 2.53 | 1.15 |
RW2 | 1 220 | 101.6 | 3 660 | 0.09 | 3.1 | 426.9 | 0.34 | 0.34 | 0.27 | 0.79 | 579.4 | 1.36 | 2.30 | 2.69 | 1.17 | |
文献[ | S38 | 1 220 | 150.0 | 2 440 | 0.07 | 2.0 | 951.5 | 0.55 | 0.18 | 0.20 | 1.10 | 1 173.6 | 1.23 | 3.10 | 2.84 | 0.92 |
S63 | 1 220 | 150.0 | 2 440 | 0.07 | 2.0 | 1 559.1 | 0.64 | 0.25 | 0.20 | 0.78 | 1 810.5 | 1.16 | 3.00 | 2.35 | 0.78 | |
S51 | 1 220 | 150.0 | 1 830 | 0.08 | 1.5 | 992.7 | 0.52 | 0.15 | 0.16 | 1.09 | 1 103.5 | 1.11 | 3.00 | 2.56 | 0.85 | |
S78 | 1 220 | 150.0 | 1 830 | 0.06 | 1.5 | 1 524.8 | 0.63 | 0.17 | 0.16 | 0.89 | 1 572.0 | 1.03 | 3.00 | 2.12 | 0.71 | |
S64 | 1 220 | 150.0 | 1 830 | 0.02 | 1.5 | 1 306.7 | 0.57 | 0.16 | 0.14 | 0.86 | 1 226.1 | 0.94 | 2.70 | 2.49 | 0.92 | |
文献[ | SW7 | 700 | 100.0 | 1 470 | 0.22 | 2.1 | 312.8 | 0.40 | 0.44 | 0.28 | 0.64 | 295.8 | 0.95 | 2.00 | 2.07 | 1.04 |
SW8 | 700 | 100.0 | 1 470 | 0.31 | 2.1 | 329.8 | 0.38 | 0.47 | 0.31 | 0.65 | 329.3 | 1.00 | 1.50 | 1.90 | 1.27 | |
SW9 | 700 | 100.0 | 1 470 | 0.22 | 2.1 | 340.1 | 0.57 | 0.31 | 0.29 | 0.92 | 446.1 | 1.31 | 2.00 | 2.08 | 1.04 | |
文献[ | W1 | 1 220 | 127.0 | 3 560 | 0.07 | 2.9 | 576.5 | 0.75 | 0.16 | 0.22 | 1.34 | 598.8 | 1.04 | 3.00 | 2.92 | 0.97 |
W3 | 1 220 | 127.0 | 3 560 | 0.09 | 2.9 | 635.8 | 0.77 | 0.18 | 0.23 | 1.30 | 570.5 | 0.90 | 1.60 | 2.79 | 1.74 | |
文献[ | SW4 | 650 | 65.0 | 1 300 | 0.001 | 2.0 | 111.5 | 0.60 | 0.18 | 0.15 | 0.85 | 133.9 | 1.20 | 1.85 | 1.45 | 0.78 |
SW5 | 650 | 65.0 | 1 300 | 0.001 | 2.0 | 117.1 | 0.63 | 0.19 | 0.14 | 0.75 | 143.0 | 1.22 | 0.99 | 1.04 | 1.06 | |
SW6 | 650 | 65.0 | 1 300 | 0.001 | 2.0 | 111.8 | 0.67 | 0.16 | 0.15 | 0.97 | 139.1 | 1.24 | 1.69 | 1.50 | 0.89 | |
SW7 | 650 | 65.0 | 1 300 | 0.001 | 2.0 | 126.1 | 0.81 | 0.16 | 0.14 | 0.89 | 165.5 | 1.31 | 1.69 | 0.89 | 0.52 | |
SW8 | 650 | 65.0 | 1 300 | 0.001 | 2.0 | 151.3 | 0.63 | 0.21 | 0.14 | 0.69 | 123.9 | 0.82 | 2.00 | 0.98 | 0.49 | |
文献[ | A1M | 1 300 | 200.0 | 2 700 | 0.01 | 2.1 | 1 209.1 | 0.73 | 0.15 | 0.18 | 1.16 | 1 318.1 | 1.09 | 4.60 | 2.55 | 0.56 |
A2C | 1 300 | 200.0 | 2 700 | 0.01 | 2.1 | 1 209.1 | 0.73 | 0.15 | 0.18 | 1.16 | 1 126.7 | 0.93 | 3.02 | 2.55 | 0.85 | |
B1M | 550 | 84.0 | 1 140 | 0.01 | 2.1 | 99.1 | 0.49 | 0.19 | 0.17 | 0.90 | 86.1 | 0.87 | 3.46 | 2.76 | 0.80 | |
B2C | 550 | 84.0 | 1 140 | 0.01 | 2.1 | 99.1 | 0.49 | 0.19 | 0.17 | 0.90 | 86.1 | 0.87 | 2.22 | 2.76 | 1.24 | |
文献[ | LSW1 | 1 200 | 120.0 | 1 200 | 0 | 1.0 | 315.9 | 0.28 | 0.11 | 0.08 | 0.75 | 321.6 | 1.02 | 1.50 | 1.35 | 0.90 |
LSW2 | 1 200 | 120.0 | 1 200 | 0 | 1.0 | 259.1 | 0.29 | 0.09 | 0.08 | 0.94 | 229.2 | 0.88 | 1.90 | 1.65 | 0.87 | |
LSW3 | 1 200 | 120.0 | 1 200 | 0.07 | 1.0 | 362.0 | 0.31 | 0.11 | 0.10 | 0.86 | 321.6 | 0.89 | 1.40 | 1.04 | 0.74 | |
MSW1 | 1 200 | 120.0 | 1 800 | 0 | 1.5 | 322.1 | 0.35 | 0.13 | 0.12 | 0.93 | 354.6 | 1.10 | 1.44 | 2.22 | 1.54 | |
MSW2 | 1 200 | 120.0 | 1 800 | 0 | 1.5 | 265.8 | 0.50 | 0.07 | 0.12 | 1.61 | 223.2 | 0.84 | 1.90 | 2.43 | 1.28 | |
MSW3 | 1 200 | 120.0 | 1 800 | 0.07 | 1.5 | 363.2 | 0.34 | 0.15 | 0.14 | 0.94 | 316.8 | 0.87 | 1.40 | 1.81 | 1.30 | |
文献[ | MW1 | 2 000 | 120.0 | 3 250 | 0.05 | 1.6 | 1 294.7 | 0.39 | 0.13 | 0.18 | 1.39 | 1 380.0 | 1.07 | 1.00 | 1.74 | 1.74 |
MW2 | 2 000 | 120.0 | 3 250 | 0.05 | 1.6 | 1 274.9 | 0.39 | 0.13 | 0.18 | 1.37 | 1 333.2 | 1.05 | 1.00 | 1.72 | 1.72 | |
MW3 | 2 000 | 120.0 | 3 250 | 0.05 | 1.6 | 1 283.6 | 0.42 | 0.12 | 0.18 | 1.50 | 1 333.5 | 1.04 | 1.30 | 1.73 | 1.33 | |
文献[ | SW -2 | 850 | 125.0 | 1 600 | 0.21 | 1.9 | 296.3 | 0.61 | 0.14 | 0.25 | 1.62 | 241.6 | 0.82 | 2.22 | 2.42 | 1.09 |
SW -3 | 850 | 125.0 | 1 600 | 0.21 | 1.9 | 288.1 | 0.63 | 0.13 | 0.25 | 1.72 | 265.6 | 0.92 | 2.27 | 2.44 | 1.08 | |
文献[ | HPCW01 | 1 000 | 100.0 | 2 100 | 0.21 | 2.1 | 680.1 | 0.60 | 0.23 | 0.27 | 1.16 | 685.2 | 1.01 | 2.12 | 1.86 | 0.88 |
HPCW02 | 1 000 | 100.0 | 2 100 | 0.21 | 2.1 | 774.2 | 0.63 | 0.23 | 0.27 | 1.18 | 698.5 | 0.90 | 2.60 | 1.84 | 0.71 | |
HPCW03 | 1 000 | 100.0 | 2 100 | 0.28 | 2.1 | 878.3 | 0.62 | 0.26 | 0.30 | 1.13 | 796.5 | 0.91 | 2.57 | 1.40 | 0.55 | |
HPCW04 | 1 000 | 100.0 | 2 100 | 0.28 | 2.1 | 915.7 | 0.64 | 0.25 | 0.30 | 1.19 | 777.6 | 0.85 | 2.81 | 1.44 | 0.51 | |
文献[ | SW1-2 | 750 | 70.0 | 750 | 0.19 | 1.0 | 214.6 | 0.49 | 0.15 | 0.12 | 0.81 | 200.3 | 0.93 | 1.36 | 0.99 | 0.73 |
SW1-3 | 750 | 70.0 | 750 | 0.27 | 1.0 | 210.0 | 0.47 | 0.15 | 0.12 | 0.85 | 255.8 | 1.22 | 0.91 | 0.72 | 0.80 | |
SW2-2 | 750 | 70.0 | 1 125 | 0.28 | 1.5 | 235.4 | 0.44 | 0.25 | 0.19 | 0.69 | 273.4 | 1.16 | 1.55 | 0.84 | 0.54 | |
SW2-3 | 750 | 70.0 | 1 125 | 0.37 | 1.5 | 255.4 | 0.50 | 0.25 | 0.21 | 0.80 | 317.6 | 1.24 | 1.14 | 0.40 | 0.35 | |
SW3-2 | 750 | 70.0 | 1 500 | 0.24 | 2.0 | 244.0 | 0.54 | 0.28 | 0.25 | 0.88 | 324.5 | 1.33 | 1.67 | 1.49 | 0.90 | |
SW3-3 | 750 | 70.0 | 1 500 | 0.37 | 2.0 | 264.3 | 0.53 | 0.31 | 0.29 | 0.88 | 380.4 | 1.44 | 1.48 | 0.78 | 0.53 | |
文献[ | SW1-1 | 1 000 | 125.0 | 2 000 | 0.10 | 2.0 | 306.5 | 0.45 | 0.19 | 0.24 | 1.24 | 377.7 | 1.23 | 1.10 | 1.94 | 1.76 |
SW1-2 | 1 000 | 125.0 | 2 000 | 0.19 | 2.0 | 372.6 | 0.51 | 0.21 | 0.27 | 1.30 | 545.5 | 1.46 | 1.00 | 1.39 | 1.39 | |
SW1-3 | 1 000 | 125.0 | 2 000 | 0.29 | 2.0 | 427.7 | 0.49 | 0.25 | 0.30 | 1.22 | 466.2 | 1.09 | 1.20 | 0.88 | 0.74 | |
SW1-4 | 1 000 | 125.0 | 2 000 | 0.38 | 2.0 | 466.7 | 0.37 | 0.35 | 0.33 | 0.92 | 400.0 | 0.86 | 0.64 | 0.48 | 0.75 | |
SW2-1 | 1 000 | 125.0 | 1 000 | 0.29 | 1.0 | 556.4 | 0.37 | 0.17 | 0.13 | 0.70 | 525.7 | 0.94 | 1.40 | 1.11 | 0.79 | |
SW2-2 | 1 000 | 125.0 | 1 500 | 0.29 | 1.5 | 556.4 | 0.43 | 0.22 | 0.22 | 0.96 | 537.0 | 0.97 | 0.60 | 0.64 | 1.07 | |
SW2-3 | 1 000 | 125.0 | 2 000 | 0.29 | 2.0 | 556.4 | 0.37 | 0.35 | 0.30 | 0.84 | 453.4 | 0.81 | 0.60 | 0.70 | 1.17 | |
SW3-1 | 1 000 | 125.0 | 2 000 | 0.19 | 2.0 | 367.6 | 0.51 | 0.20 | 0.27 | 1.32 | 545.5 | 1.48 | 1.00 | 1.42 | 1.42 | |
SW3-2 | 1 000 | 125.0 | 2 000 | 0.29 | 2.0 | 544.0 | 0.37 | 0.34 | 0.30 | 0.86 | 453.4 | 0.83 | 0.60 | 0.75 | 1.25 | |
SW4-2 | 1 000 | 125.0 | 2 000 | 0.29 | 2.0 | 561.7 | 0.33 | 0.39 | 0.30 | 0.74 | 464.1 | 0.83 | 0.50 | 0.68 | 1.36 | |
SW4-3 | 1 000 | 125.0 | 2 000 | 0.29 | 2.0 | 554.0 | 0.36 | 0.36 | 0.30 | 0.82 | 453.0 | 0.82 | 0.69 | 0.71 | 1.03 | |
SW4-4 | 1 000 | 125.0 | 2 000 | 0.19 | 2.0 | 565.6 | 0.37 | 0.35 | 0.27 | 0.75 | 453.4 | 0.80 | 0.60 | 0.91 | 1.51 | |
SW5-1 | 1 000 | 125.0 | 2 000 | 0.29 | 2.0 | 546.0 | 0.32 | 0.40 | 0.30 | 0.73 | 514.2 | 0.94 | 0.58 | 0.74 | 1.28 | |
SW5-2 | 1 000 | 125.0 | 2 000 | 0.29 | 2.0 | 554.0 | 0.39 | 0.33 | 0.30 | 0.88 | 453.0 | 0.82 | 0.69 | 0.71 | 1.03 | |
SW5-3 | 1 000 | 125.0 | 2 000 | 0.29 | 2.0 | 571.7 | 0.42 | 0.31 | 0.30 | 0.93 | 567.4 | 0.99 | 0.86 | 0.64 | 0.74 | |
SW6-1 | 1 000 | 125.0 | 2 000 | 0.29 | 2.0 | 554.8 | 0.52 | 0.25 | 0.30 | 1.18 | 570.0 | 1.03 | 0.89 | 0.71 | 0.80 | |
SW6-2 | 1 000 | 125.0 | 2 000 | 0.29 | 2.0 | 554.0 | 0.39 | 0.33 | 0.30 | 0.88 | 453.4 | 0.82 | 0.69 | 0.71 | 1.03 | |
SW6-3 | 1 000 | 125.0 | 2 000 | 0.29 | 2.0 | 567.7 | 0.58 | 0.23 | 0.30 | 1.30 | 633.4 | 1.12 | 1.10 | 0.66 | 0.60 | |
平均值 | 1.04 | 1.10 | 1.03 | |||||||||||||
离散系数 | 0.26 | 0.17 | 0.29 |

图2 有效刚度计算结果与剪跨比的关系
Fig. 2 Relationship between effective stiffness calculation results and shear span ratio
。 | (8) |

图3 式(8)计算结果与剪跨比的关系
Fig. 3 Relationship between the calculation results of equation 8 and shear span ratio
对于截面屈服弯矩My,文中用的是OpenSees计算的值,也可以根据Panagiotakos
剪力墙进入塑性阶段后,随着位移增加,受弯承载力会有所增大,这是由于钢筋进入强化阶段以及混凝土受到箍筋约束共同作用的结果,承载力达到峰值之后开始进入下降段,直到剪力墙破坏。根据文献[
。 | (9) |
计算了收集的105片剪力墙的峰值弯矩,并与实验值对比,计算值与实验值比值的平均值为1.11,离散系数为0.17,计算结果相对偏大。
。 | (10) |

图4 弯矩增强系数与轴压的关系
Fig. 4 Relationship between moment enhancement factor and axial pressure ratio
剪力墙变形达到一定值时,底部塑性区的破坏逐渐严重,受压区约束混凝土出现压碎,局部钢筋出现屈曲,承载力迅速下降,构件发生破坏。对于峰值变形能力主要与轴压比和约束区箍筋用量有
, | (11) |
式中:vmax为最大剪应力,通过峰值弯矩计算值计算;c为最外侧混凝土应变0.004时受压区高度。受压区高度一般与轴压比和纵筋配筋率有关。文献[
, | (12) |
式中:kf为腹板纵筋配筋特征值,kf=ρwfyw/fc计算,式中ρw为腹板纵筋配筋率,fyw为腹板纵筋屈服强度。
计算结果与文献[

图5 式(11)计算结果
Fig. 5 Calculation results of equation 11
用

图6 峰值转角计算精度与配箍特征值关系
Fig. 6 Relationship between the peak rotation
从
选择OpenSees中的可以考虑强度与刚度退化的ModIMK材料来定义剪力墙的滞回规则,如

图7 ModIMK材料滞回模型
Fig. 7 ModIMK material hysteretic model
退化由能量耗散能力Et控制,根据Haselton
, | (13) |
式中,λ为能量耗散系数,Haselton
根据文献[
应用文中提出的滞回模型,采用OpenSees对剪力墙试验进行了模拟,这里给出了文献[

图8 C10剪力墙截面
Fig. 8 Shear wall section of C10
剪力墙的ModIMK分析模型如

图9 C10剪力墙ModIMK模型
Fig. 9 Shear wall ModIMK model of C10
EcIeff/EcIg | Mc/(kN·m) | θc/rad | |||
---|---|---|---|---|---|
试验值 | 计算值 | 试验值 | 计算值 | 试验值 | 计算值 |
0.26 | 0.19 | 4 622.0 | 4777.5 | 0.031 | 0.028 |

图10 C10 ModIMK模型模拟结果
Fig. 10 ModIMK model simulation result of C10
文献[
建立剪力墙的ModIMK模型,建模方法与上文一致。低周反复模拟结果如

图11 SW1-1试验和模拟结果对比
Fig. 11 Comparison of SW1-1 test and simulation results
壳模型模拟结果如
为验证文中的剪力墙滞回模型在地震作用下的适用性,选择文献[
框架剪力墙的ModIMK模型如

图12 5层框架剪力墙ModIMK模型
Fig. 12 5 storey frame-shear wall ModIMK model
文献[
SFI-MVLEM和ModIMK模型采用倒三角形加载方式Pushover的结果见

图13 Pushover分析对比
Fig. 13 Pushover analysis
文献[

图14 时程分析对比
Fig. 14 Time history analysis
增量动力分析(IDA)可以预测结构在地震作用下的倒塌概率,在太平洋地震工程研究中心(PEER)地震波数据库中下载了13条远场地震波,对文献[
序号 | 地震名称 | 年份 | 震级 | 记录台站 |
---|---|---|---|---|
1 | Northridge(East-North) | 1994 | 6.7 | Beverly Hills |
2 | Northridge(East-West) | 1994 | 6.7 | Canyon Country |
3 | Duzce, Turkey(East-West) | 1999 | 7.1 | Bolu |
4 | Hector Mine(East-West) | 1999 | 7.1 | Hector |
5 | Imperial Valley(West-Sourth) | 1979 | 6.5 | Delta |
6 | Imperial Valley(East-North) | 1979 | 6.5 | El Centro Array #11 |
7 | Kobe, Japan(East-West) | 1995 | 6.9 | Nishi-Akashi |
8 | Kobe, Japan(East-West) | 1995 | 6.9 | Shin-Osaka |
9 | Kocaeli, Turkey(East-West) | 1999 | 7.5 | Duzce |
10 | Kocaeli, Turkey(East-West) | 1999 | 7.5 | Arcelik |
11 | Landers(West-Sourth) | 1992 | 7.3 | Yermo Fire Station |
12 | Loma Prieta(East-West) | 1989 | 6.9 | Capitola |
13 | Loma Prieta(East-West) | 1989 | 6.9 | Gilroy Array #3 |
文献[

图15 IDA结果
Fig. 15 IDA results
在计算过程中ModIMK模型计算收敛性较好、计算速度快,所用的时间大约为精细模型和纤维模型的百分之一左右。
笔者在试验结果和理论分析的基础上,提出了基于ModIMK滞回规则的RC剪力墙弯矩-转角三折线计算模型,通过数值模拟对模型进行验证。
1)通过理论分析与试验总结把剪力墙侧向变形过程分为3段:屈服段、强化段、破坏段,提出了剪力墙的弯矩-转角三折线模型,模型计算简单,便于实际应用。
2)提出了模型关键点计算方法,通过105个试件试验结果分析提出了截面有效刚计算方法,通过对3种计算方法对比发现剪跨比对有效刚度影响明显,尤其在剪跨比小于2.0时有效刚度计算误差稍大,通过对试验数据重新拟合,文中提出的计算方法精度较高。对构件的峰值位移计算进行了研究,当箍筋间距满足一要求时,箍筋用量达到一定量时再增加不能显著增加剪力墙的变形能力。105个剪力墙试件的计算与试验对比结果表明提出的弯矩-转角三折线模型能有效预测剪力墙的非线性变形行为。
3)采用OpenSees中的ModIMK材料定义模型的滞回规则,对剪力墙低周反复试验进行模拟,结果表明剪力墙的ModIMK模型与试验结果吻合很好,验证了模型的准确性;与分层壳模型的对比表明提出模型对剪力墙破坏段的模拟更有优势。5层框架剪力墙的时程分析表明ModIMK模型能有效模拟框架剪力墙在地震作用下的响应。8层剪力墙的增量动力分析(IDA)对比表明ModIMK模型预测的剪力墙倒塌位移角比纤维模型小。
参考文献
Naeim F, Lew M, Carpenter L D, et al. Performance of tall buildings in Santiago, Chile during the 27 February 2010 offshore Maule, Chile earthquake[J]. The Structural Design of Tall and Special Buildings, 2011, 20(1): 1-16. [百度学术]
Sritharan S, Beyer K, Henry R S, et al. Understanding poor seismic performance of concrete walls and design implications[J]. Earthquake Spectra, 2014, 30(1): 307-334. [百度学术]
Mazzoni S, McKenna F, Scott M H, et al. OpenSees command language manual[M]. California: The Regents of the University of California, 2006: 264. [百度学术]
Kolozvari K, Wallace J W. Practical nonlinear modeling of reinforced concrete structural walls[J]. Journal of Structural Engineering, 2016, 142(12): G4016001. [百度学术]
Lu X Z, Xie L L, Guan H, et al. A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees[J]. Finite Elements in Analysis and Design, 2015, 98: 14-25. [百度学术]
Abdullah S A, Wallace J W. Drift capacity of reinforced concrete structural walls with special boundary elements[J]. ACI Structural Journal, 2019, 116(1): 183-194. [百度学术]
梁兴文, 赵花静, 邓明科. 考虑边缘约束构件影响的高强混凝土剪力墙弯矩-曲率骨架曲线参数研究[J]. 建筑结构学报, 2009, 30(S2): 62-67. [百度学术]
Liang X W, Zhao H J, Deng M K. Moment-curvature relationship analysis of high-strength concrete shear wall with partially confined end-zones[J]. Journal of Building Structures, 2009, 30(S2): 62-67.(in Chinese) [百度学术]
赵花静, 梁兴文, 宋璨. 高强混凝土剪力墙屈服位移计算方法[J]. 土木建筑与环境工程, 2014, 36(3): 80-85. [百度学术]
Zhao H J, Liang X W, Song C. Yield displacement calculation method of high-strength concrete shear wall[J]. Journal of Civil, Architectural & Environmental Engineering, 2014, 36(3): 80-85.(in Chinese) [百度学术]
张松, 吕西林, 章红梅. 钢筋混凝土剪力墙构件恢复力模型[J]. 沈阳建筑大学学报(自然科学版), 2009, 25(4): 644-649. [百度学术]
Zhang S, Lü X L, Zhang H M. Experimental and analytical studies on resilience models of RC shear walls[J]. Journal of Shenyang Jianzhu University (Natural Science), 2009, 25(4): 644-649.(in Chinese) [百度学术]
钱稼茹, 徐福江. 钢筋混凝土剪力墙基于位移的变形能力设计方法[J]. 清华大学学报(自然科学版), 2007, 47(3): 305-308. [百度学术]
Qian J R, Xu F J. Displacement-based deformation capacity design method of RC cantilever walls[J]. Journal of Tsinghua University (Science and Technology), 2007, 47(3): 305-308.(in Chinese) [百度学术]
李宏男, 李兵. 钢筋混凝土剪力墙抗震恢复力模型及试验研究[J]. 建筑结构学报, 2004, 25(5): 35-42. [百度学术]
Li H N, Li B. Experimental study on seismic restoring performance of reinforced concrete shear walls[J]. Journal of Building Structures, 2004, 25(5): 35-42.(in Chinese) [百度学术]
Priestley M J N, Seible F, Calvi G M. Seismic design and retrofit of bridges[M]. New York: Wiley, 1996. [百度学术]
顾冬生, 吴刚. 地震荷载作用下FRP加固钢筋混凝土圆柱变形能力计算方法研究[J]. 工程力学, 2013, 30(1): 261-270. [百度学术]
Gu D S, Wu G. Deformation capacity of FRP retrofitted circular concrete columns under simulated seismic loading[J]. Engineering Mechanics, 2013, 30(1): 261-270.(in Chinese) [百度学术]
Paulay T, Priestley M J N. Seismic design of reinforced concrete and masonry buildings[M]. New York: Wiley, 1992. [百度学术]
Li B, Xiang W Z. Effective stiffness of squat structural walls[J]. Journal of Structural Engineering, 2011, 137(12): 1470-1479. [百度学术]
Haselton C B, Liel A B, Taylor-Lange S C, et al. Calibration of model to simulate response of reinforced concrete beam-columns to collapse[J]. ACI Structural Journal, 2016, 113(6): 1141-1152. [百度学术]
Panagiotakos T B, Fardis M N. Deformations of reinforced concrete members at yielding and ultimate[J]. Structural Journal, 2001, 98(2): 135-148. [百度学术]
Alarcon C, Hube M A, de la Llera J C. Effect of axial loads in the seismic behavior of reinforced concrete walls with unconfined wall boundaries[J]. Engineering Structures, 2014, 73: 13-23. [百度学术]
Dazio A, Beyer K, Bachmann H. Quasi-static cyclic tests and plastic hinge analysis of RC structural walls[J]. Engineering Structures, 2009, 31(7): 1556-1571. [百度学术]
邓明科, 梁兴文, 刘清山. 横向约束钢筋新配筋方案高性能混凝土剪力墙抗震性能的试验研究[J]. 西安建筑科技大学学报(自然科学版), 2006, 38(4):538-543. [百度学术]
Deng M, Liang X, Yang K. Experimental study on seismic behavior of high performance concrete shear wall with new strategy of transverse confining stirrup[J]. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2006, 38(4): 538-543. (in Chinese) [百度学术]
Cho S H, Tupper B, Cook W D, et al. Structural steel boundary elements for ductile concrete walls[J]. Journal of Structural Engineering, 2004, 130(5): 762-768. [百度学术]
Hube M A, Marihuén A, de la Llera J C, et al. Seismic behavior of slender reinforced concrete walls[J]. Engineering Structures, 2014, 80: 377-388. [百度学术]
Liu H. Effect of concrete strength on the response of ductile shear walls[D]. Montreal, Canada: McGill University, 2004. [百度学术]
Lu Y Q, Henry R S, Gultom R, et al. Cyclic testing of reinforced concrete walls with distributed minimum vertical reinforcement[J]. Journal of Structural Engineering, 2017, 143(5): 04016225. [百度学术]
Lu Y Q, Gultom R J, Ma Q Q, et al. Experimental validation of minimum vertical reinforcement requirements for ductile concrete walls[J]. ACI Structural Journal, 2018, 115(4): 1115-1130. [百度学术]
Oesterle R G, Fiorato A E, Johal L S, et al. Earthquake resistant structural walls-tests of isolated walls[J]. Research and Development Construction Technology Laboratories, Portland Cement Association, 1976: 1-321. [百度学术]
Oh Y H, Han S W, Lee L H. Effect of boundary element details on the seismic deformation capacity of structural walls[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(8): 1583-1602. [百度学术]
Segura C L, Wallace J W. Seismic performance limitations and detailing of slender reinforced concrete walls[J]. ACI Structural Journal, 2018, 115(3): 849-859. [百度学术]
Shegay A V, Motter C J, Elwood K J, et al. Impact of axial load on the seismic response of rectangular walls[J]. Journal of Structural Engineering, 2018, 144(8): 04018124. [百度学术]
Su R K L, Wong S M. Seismic behaviour of slender reinforced concrete shear walls under high axial load ratio[J]. Engineering Structures, 2007, 29(8): 1957-1965. [百度学术]
Thomsen J H IV, Wallace J W. Displacement-based design of slender reinforced concrete structural walls-experimental verification[J]. Journal of Structural Engineering, 2004, 130(4): 618-630. [百度学术]
Tran T A, Wallace J W. Cyclic testing of moderate-aspect-ratio reinforced concrete structural walls[J]. ACI Structural Journal, 2015, 112(6): 653-665. [百度学术]
Zhang Y, Wang Z. Seismic behavior of reinforced concrete shear walls subjected to high axial loading[J]. Structural Journal, 2000, 97(5): 739-750. [百度学术]
Ali A, Wight J K. RC structural walls with staggered door openings[J]. Journal of Structural Engineering, 1991, 117(5): 1514-1531. [百度学术]
Pilakoutas K, Elnashai A S. Cyclic behavior of reinforced concrete cantilever walls, Part I: Experimental results[J]. ACI structural journal, 1995, 92(3): 271-281. [百度学术]
Ghorbani-Renani I, Velev N, Tremblay R, et al. Modeling and testing influence of scaling effects on inelastic response of shear walls[J]. ACI Structural Journal, 2009, 106(3): 358-367. [百度学术]
Salonikios T N, Kappos A J, Tegos I A, et al. Cyclic load behavior of low-slenderness reinforced concrete walls: failure modes, strength and deformation analysis, and design implications[J]. ACI Structural Journal, 2000, 97(1): 132-141. [百度学术]
章红梅, 吕西林, 杨雪平, 等. 边缘构件配箍对钢筋混凝土剪力墙抗震性能的影响[J]. 结构工程师, 2008, 24(5): 100-104, 118. [百度学术]
Zhang H M, Lu X L, Yang X P, et al. Influence of boundary stirrup on seismic behavior of reinforced concrete shear walls[J]. Structural Engineers, 2008, 24(5): 100-104, 118.(in Chinese) [百度学术]
邓明科, 梁兴文, 张思海. 高性能混凝土剪力墙延性性能的试验研究[J]. 建筑结构学报, 2009, 30(S1): 139-143. [百度学术]
Deng M K, Liang X W, Zhang S H. Experimental study on ductility of high performance concrete shearwall[J]. Journal of Building Structures, 2009, 30(S1): 139-143.(in Chinese) [百度学术]
刘志伟. 高性能混凝土剪力墙抗震性能研究[D].上海:同济大学,2003. [百度学术]
LIU Z W. Study on the seismic performance of high performance reinforced concrete shear wall[D]. Shanghai: Tongji University, 2003.(in Chinese) [百度学术]
章红梅. 剪力墙结构基于性态的抗震设计方法研究[D]. 上海: 同济大学,2007. [百度学术]
Zhang Hongmei.Study on the performance-based seismic design method for shear wall structures[D]. Shanghai: Tongji University, 2007.(in Chinese) [百度学术]
Haselton C B, Liel A B, Lange S C, et al. Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings[J]. Berkeley: Pacific Earthquake Engineering Research Center, 2008(3): 152. [百度学术]
Shegay A V, Motter C J, Elwood K J, et al. Deformation capacity limits for reinforced concrete walls[J]. Earthquake Spectra, 2019, 35(3): 1189-1212. [百度学术]
鲁懿虬, 黄靓. 端部约束箍筋对受弯破坏RC剪力墙变形能力的影响[J]. 工程力学, 2015, 32(4): 85-92. [百度学术]
Lu Y Q, Huang L. Influence of confining stirrups on the deformation capacity of rc walls with flexure failure[J]. Engineering Mechanics, 2015, 32(4): 85-92.(in Chinese) [百度学术]
Ibarra L F, Krawinkler H. Global collapse of frame structures under seismic excitations[M]. Berkeley, Calif: Pacific Earthquake Engineering Research Center, 2005. [百度学术]
Lu X Z, Xie L L, Guan H, et al. A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees[J]. Finite Elements in Analysis and Design, 2015, 98: 14-25. [百度学术]
Kolozvari K I. Analytical modeling of cyclic shear-flexure interaction in reinforced concrete structural walls[D]. Los Angeles: University of California, 2013. [百度学术]
Shegay A. Seismic performance of reinforced concrete walls designed for ductility[D]. Auckland: ResearchSpace, 2019. [百度学术]
Vamvatsikos D, Cornell C A. Applied incremental dynamic analysis[J]. Earthquake Spectra, 2004, 20(2): 523-553. [百度学术]
Marafi N A, Ahmed K A, Lehman D E, et al. Variability in seismic collapse probabilities of solid-and coupled-wall buildings[J]. Journal of Structural Engineering, 2019, 145(6): 04019047. [百度学术]