摘要
在风电机组全寿命周期内,长期风速概率分布会使风电齿轮箱传动系统动载荷出现随机特性,影响其疲劳损伤预估精度。笔者提出了一种考虑长期风速概率分布特征的风电齿轮箱传动系统疲劳损伤预估方法,通过建立大功率海上风电机组OpenFAST-SIMPACK联合仿真模型,计算不同平均风速与湍流强度组合工况下的风电齿轮箱传动系统齿轮短期疲劳损伤,进而采用代理模型技术重构“平均风速、湍流强度-短期疲劳损伤”映射关系,预测齿轮长期疲劳损伤。研究结果表明:风电齿轮箱传动系统低速级太阳轮容易发生接触疲劳失效;在额定风速以下,低速级太阳轮短期疲劳损伤与平均风速呈正相关,在额定风速附近,平均风速与湍流强度的随机特性均会增大其长期疲劳损伤不确定性,增大其疲劳失效风险。
大功率海上风电机组是目前最有效地开发海上风能资源的重大海洋工程装备之一。风电齿轮箱是风电机组中传递力与运动的关键传动装置。据统计,海上风电齿轮箱故障率比陆上高5%以
近年来,国内外学者对风电齿轮箱传动系统疲劳损伤开展了大量研究。Dong
为了提高传动系统长期疲劳损伤的计算效率,部分学者将多项式响应面(polynomial response surface,PRS)、克里金(kriging,KRG)、人工神经网络(artificial neural network,ANN)和径向基函数(radial basis function,RBF)等代理模型方法引入到复杂系统动力学分析
笔者考虑随机风速与风电机组拓扑结构,建立大功率海上风电机组OpenFAST-SIMPACK联合仿真模型;考虑长期风速概率分布特征,利用Copula函数构建平均风速-湍流强度联合概率分布,建立平均风速-湍流强度关键工况集合,计算对应的风电齿轮箱传动系统齿轮短期疲劳损伤;采用代理模型技术重构“平均风速、湍流强度-疲劳损伤”映射关系,预测齿轮长期疲劳损伤。

图1 某型风电机组齿轮箱传动结构及原理
Fig. 1 Transmission structure and principle of a wind turbine gearbox
项目 | 参数 | 项目 | 参数 |
---|---|---|---|
额定功率/MW | 5.8 | 轮毂高度/m | 105.50 |
类型 | 上风向、3叶片 | 风轮扫掠直径/m | 171.44 |
切入、额定、切出风速/(m⋅ | 3.50、9.58、25.00 | 齿轮箱总传动比 | 1:120.7 |
风轮切入、额定转速/(r⋅mi | 5.4、10.1 |
发电机额定转速/(r⋅mi | 1 219.07 |
速度等级 | 齿轮箱构件 | 齿数 | 模数/mm | 螺旋角/() | 压力角/() |
---|---|---|---|---|---|
低速级 | 内齿圈 | 93 | 24 | 5 | 20 |
行星轮 | 29 | 24 | 5 | 20 | |
太阳轮 | 32 | 24 | 5 | 20 | |
中间级 | 内齿圈 | 118 | 17 | 8.5 | 20 |
行星轮 | 47 | 17 | 8.5 | 20 | |
太阳轮 | 23 | 17 | 8.5 | 20 | |
高速级 | 大齿轮 | 121 | 12 | 9 | 20 |
小齿轮 | 24 | 12 | 9 | 20 |

图2 大功率海上风电机组OpenFAST-SIMPACK联合仿真模型
Fig. 2 OpenFAST-SIMPACK co-simulation model for high-power offshore wind turbines
为了实现OpenFAST-SIMPACK联合仿真,利用Matlab动态修改OpenFAST风电机组整机全局耦合模型工况.inp文件,计算任意给定平均风速-湍流强度环境参数下的风电机组轮毂处6自由度气动载荷;利用Matlab将气动载荷文件格式转为SIMPACK风电齿轮箱传动系统动力学模型载荷.afs文件,并同时调用其宏命令.sjs文件进行仿真,计算风电齿轮箱传动系统齿轮副动态啮合力。
根据IEC61400-1标
, | (1) |
式中:为平均风速;为威布尔分布的形状参数;为威布尔分布的尺度参数。
将10 min时序风速的变化情况作为湍流强度,其概率密度函数通常服从伽马分
, | (2) |
式中:为湍流强度;为伽马分布的尺度参数;为伽马分布的形状参数;为伽马函数;。
根据
。 | (3) |
式中,。函数通常包括Gumbel Copula、Clayton Copula、Frank Copula
(4) |
式中,采用核密度对进行参数估
为了从中高效地抽选权重占比较高的平均风速-湍流强度环境参数组合工况,结合拉丁超立方抽样

图3 关键环境工况分析流程
Fig. 3 Analysis flow of key environmental conditions
步骤1:利用Nataf变
步骤2:采用拉丁超立方抽样方
步骤3:利用Nataf变换的逆变换过
步骤4:计算抽样样本数据中任意2组数据的欧式距离,以欧式距离最大的抽样样本作为训练样本集,剩余部分作为测试样本集;以与中各样本欧式距离最小作为不相似度,将中最大的样本加入,直至训练样本集的样本数量达到设定值。
通过步骤1~4实现从平均风速-湍流强度联合分布中获得指定数量且权重占比较大的关键环境工况,用于风电齿轮箱传动系统疲劳损伤计算。
根据大功率海上风电机组OpenFAST-SIMPACK联合仿真模型,计算各关键工况下风电齿轮箱传动系统齿轮副时序动态啮合力。假设时序动态啮合力在和之间有个时间段,利用
, | (5) |
, | (6) |
(7) |
式中:对于内齿圈和太阳轮,等于行星轮数量;为啮合力块循环次数;为啮合力块的总时间段数;为啮合力块的第个时间段;为啮合力块在时间段内齿轮平均转速;为端面分度圆上的名义切向力;为工作齿宽;为小齿轮分度圆直径;为齿轮传动比;为节点区域系数;为材料弹性系数;为重合度系数;为接触应力计算的螺旋角系数;为使用系数;为动载系数;分别为接触应力计算和弯曲应力计算的齿向载荷分布系数;、分别为接触应力计算和弯曲应力计算的齿间载荷分配系数;为齿形系数;为应力修正系数;为弯曲应力计算的螺旋角系数;为轮毂厚度系数;为重合度系数;为法向模数。

图4 齿轮接触与弯曲应力块统计
Fig. 4 Gear contact and bending stress block statistics
基于式(
。 | (8) |
式中:为应力块数量;为第个应力块幅值;和分别为齿轮S-N曲线参数,利用齿轮的国际标准ISO 6336-
(9) |
在
。 | (10) |
式中:为第个点风速;为第个点湍流强度;T为风电机组设计寿命,T=25 a。
为了高效计算,采用代理模型方
(11) |
式中:为多项式全局近似模型;是均值为0、方差为、协方差非零的局部偏差模型;分别为多项式函数待定系数;为训练样本工况之间的欧氏距离;为权重系数;为径向基函数;为训练样本个数。
(12) |
, | (13) |
(14) |
式中:为测试样本数量;为第组测试样本下的齿轮短期疲劳损伤;为代理模型预测第组测试样本下的齿轮短期疲劳损伤;为所有测试样本下的齿轮短期疲劳损伤均值。

图5 3种代理模型对低速级太阳轮短期疲劳损伤的预测效果
Fig. 5 Prediction results of 3 surrogate models on short-term fatigue damage of the low-speed sun gear
代理模型类型 | 弯曲疲劳 | 接触疲劳 | ||||
---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | |||
克里金模型 | 0.511 | 1.070 | 0.900 | 0.745 | 1.500 | 0.890 |
多项式响应面模型 | 0.339 | 0.850 | 0.955 | 0.466 | 1.158 | 0.960 |
径向基模型 | 0.163 | 0.341 | 0.989 | 0.220 | 0.371 | 0.990 |
根据中国某海上风电场历年风速统计数据,建立平均风速-湍流强度联合概率密度函数,并选取关键环境工况,分别计算各关键环境工况下风电齿轮箱传动系统齿轮副动态啮合力(各工况仿真时间100 s),并计算齿轮短期和长期疲劳损伤;最后分析环境参数对齿轮短期和长期疲劳损伤的影响规律。

图6 平均风速概率密度函数
Fig. 6 Density function of average wind speed

图7 湍流强度概率密度函数
Fig. 7 Density function of turbulence intensity

图8 平均风速-湍流强度相关性
Fig. 8 Correlation between mean wind speed

图9 平均风速-湍流强度联合概率密度函数
Fig. 9 Joint function of mean wind speed

图10 环境参数对低速级太阳轮接触与弯曲应力的影响
Fig. 10 Effects of environmental parameters on contact and bending stress of the low speed sun gear

图11 风电齿轮箱传动系统齿轮短期接触与弯曲疲劳损伤
Fig. 11 Short-term contact and bending fatigue damage of gears in the wind turbine gearbox transmission system


图12 环境参数对低速级太阳轮短期接触与弯曲疲劳损伤的影响
Fig. 12 Effects of environmental parameters on short-term contact and bending fatigue damage of the low-speed sun gear
为了验证本文方法计算结果的精度与效率,将本文方法与常规方法计算的齿轮长期疲劳损伤进行对比分析,如
(15) |
式中:为常规方法计算的齿轮长期疲劳损伤;为本文方法计算的齿轮长期疲劳损伤;为误差百分比。

图13 风电齿轮箱传动系统齿轮长期疲劳损伤计算结果与误差对比
Fig. 13 Long-term fatigue damage calculation results and errors of gears in the wind turbine gearbox transmission system

图14 环境参数对低速级太阳轮长期疲劳损伤的影响
Fig. 14 Effects of environmental parameters on long-term fatigue damage of the low-speed sun gear
笔者考虑长期风速概率分布特征,建立了大功率海上风电机组OpenFAST-SIMPACK联合仿真模型,通过关键环境工况分析,计算对应的风电齿轮箱传动系统齿轮短期疲劳损伤,基于代理模型预测齿轮长期疲劳损伤,得出结论如下:
1) 通过关键环境工况选取与基于代理模型的风电齿轮箱传动系统齿轮长期疲劳损伤计算,相对于常规方法,其计算效率可以提高260%,且误差小于8%。
2) 风电齿轮箱传动系统各级齿轮接触疲劳损伤均高于弯曲疲劳损伤,其中低速级太阳轮接触疲劳损伤最大,易发生疲劳失效。
3) 在额定风速以下时,低速级太阳轮短期疲劳损伤与平均风速呈正相关,而在额定风速附近时,其主要受湍流强度影响;平均风速与湍流强度的随机特性会增大低速级太阳轮长期疲劳损伤不确定性。
参考文献
李垚, 朱才朝, 陶友传, 等. 风电机组可靠性研究现状与发展趋势[J]. 中国机械工程, 2017, 28(9): 1125-1133. [百度学术]
Li Y, Zhu C C, Tao Y C, et al. Research status and development tendency of wind turbine reliability[J]. China Mechanical Engineering, 2017, 28(9): 1125-1133. (in Chinese) [百度学术]
王磊. 海上风电机组系统动力学建模及仿真分析研究[D]. 重庆: 重庆大学, 2011. [百度学术]
Wang L. Study on systematic dynamic model and simulation for offshore wind turbine[D]. Chongqing: Chongqing University, 2011. (in Chinese) [百度学术]
Dong W B, Xing Y H, Moan T, et al. Time domain-based gear contact fatigue analysis of a wind turbine drivetrain under dynamic conditions[J]. International Journal of Fatigue, 2013, 48: 133-146. [百度学术]
向东, 蒋李, 沈银华, 等. 风电齿轮箱在随机风载下的疲劳损伤计算模型[J]. 振动与冲击, 2018, 37(11): 115-123. [百度学术]
Xiang D, Jiang L, Shen Y H, et al. Fatigue damage calculation model for wind turbine gearboxes under random wind loads[J]. Journal of Vibration and Shock, 2018, 37(11): 115-123. (in Chinese) [百度学术]
Nejad A R, Gao Z, Moan T. On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drivetrains[J]. International Journal of Fatigue, 2014, 61: 116-128. [百度学术]
Nejad A R, Bachynski E E, Kvittem M I, et al. Stochastic dynamic load effect and fatigue damage analysis of drivetrains in land-based and TLP, spar and semi-submersible floating wind turbines[J]. Marine Structures, 2015, 42: 137-153. [百度学术]
Wang S S, Nejad A R, Moan T. On design, modelling, and analysis of a 10-MW medium-speed drivetrain for offshore wind turbines[J]. Wind Energy, 2020, 23(4): 1099-1117. [百度学术]
熊中杰. 随机风速下风力发电机组齿轮箱疲劳断裂寿命研究[D]. 南京: 南京理工大学, 2019. [百度学术]
Xiong Z J. Research on fatigue fracture life of wind turbine gearbox under random wind[D]. Nanjing: Nanjing University of Science and Technology, 2019. (in Chinese) [百度学术]
Heidebrecht A, MacManus D G. Surrogate model of complex non-linear data for preliminary nacelle design[J]. Aerospace Science and Technology, 2019, 84: 399-411. [百度学术]
Palmer K, Realff M. Metamodeling approach to optimization of steady-state flowsheet simulations: model generation[J]. Chemical Engineering Research and Design, 2002, 80(7): 760-772. [百度学术]
Jia Z Y, Davis E, Muzzio F J, et al. Predictive modeling for pharmaceutical processes using kriging and response surface[J]. Journal of Pharmaceutical Innovation, 2009, 4(4): 174-186. [百度学术]
Milovanović S, von Sydow L. A high order method for pricing of financial derivatives using radial basis function generated finite differences[J]. Mathematics and Computers in Simulation, 2020, 174: 205-217. [百度学术]
Murcia J P, Réthoré P E, Dimitrov N, et al. Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates[J]. Renewable Energy, 2018, 119: 910-922. [百度学术]
Li X A, Zhang W. Probabilistic fatigue evaluation of floating wind turbine using combination of surrogate model and copula model[C]//Proceedings of the AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019: AIAA2019-0247. [百度学术]
Zhao Y L, Dong S. Probabilistic fatigue surrogate model of bimodal tension process for a semi-submersible platform[J]. Ocean Engineering, 2021, 220: 108501. [百度学术]
Wilkie D, Galasso C. Impact of climate-change scenarios on offshore wind turbine structural performance[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110323. [百度学术]
Jonkman B, Jonkman J. FAST v8. 16.00 a-bjj[EB/OL]. 2016-07-16[2021-12-20]. https://openfast.readthedocs.io/en/v3.5.2/_downloads/5f2ddf006568adc9b88d8118dc3f1732/FAST8_README.pdf. [百度学术]
陈旭, 朱才朝, 宋朝省, 等. 紧急停机工况下风力发电机系统动态特性分析[J]. 机械工程学报, 2019, 55(5): 82-88. [百度学术]
Chen X, Zhu C C, Song C S, et al. Dynamic characteristics analysis of wind turbine under emergency shutdown events[J]. Journal of Mechanical Engineering, 2019, 55(5): 82-88. (in Chinese) [百度学术]
陈岩松, 朱才朝, 谭建军, 等. 多工况下兆瓦级海上风电齿轮箱均载性能优化设计[J]. 重庆大学学报, 2022, 45(09): 1-14. [百度学术]
Chen Y S, Zhu C C, Tan J J, et al. Optimal design of load sharing performance of megawatt level offshore wind turbine gearbox under multi-operating conditions[J]. Journal of Chongqing University, 2022, 45(09): 1-14.(in Chinese) [百度学术]
刘华朝, 朱才朝, 柏厚义. 轮齿修形对兆瓦级风电齿轮箱NVH性能的影响[J]. 振动与冲击, 2016, 35(24): 158-163, 188. [百度学术]
Liu H C, Zhu C C, Bai H Y. The effect of gear modification on the NVH characteristics of a megawatt level wind turbine gearbox[J]. Journal of Vibration and Shock, 2016, 35(24): 158-163, 188. (in Chinese) [百度学术]
International Electrotechnical Commission. Wind turbines - Part 1: design requirements : IEC 61400-1:2005 [S]. IEC, 2006. [百度学术]
Li H X, Cho H, Sugiyama H, et al. Reliability-based design optimization of wind turbine drivetrain with integrated multibody gear dynamics simulation considering wind load uncertainty[J]. Structural and Multidisciplinary Optimization, 2017, 56(1): 183-201. [百度学术]
龚伟俊, 李为相, 张广明. 基于威布尔分布的风速概率分布参数估计方法[J]. 可再生能源, 2011, 29(6): 20-23. [百度学术]
Gong W J, Li W X, Zhang G M. The estimation algorithm on the probabilistic distribution parameters of wind speed based on Weibull distribution[J]. Renewable Energy Resources, 2011, 29(6): 20-23. (in Chinese) [百度学术]
Sklar A. Fonctions de repartition an dimensions et leurs marges[J]. Publ. inst. statist. univ. Paris, 1959, 8: 229-231. [百度学术]
涂志斌, 黄铭枫, 楼文娟, 等. 基于Copula函数的风浪多方向极限状态曲线[J]. 振动与冲击, 2021, 40(14): 1-9, 46. [百度学术]
Tu Z B, Huang M F, Lou W J, et al. Dimensional environmental contour lines of the wind and wave based on Copula functions[J]. Journal of Vibration and Shock, 2021, 40(14): 1-9, 46. (in Chinese) [百度学术]
侯亚楠. Copula函数的估计及其应用[D]. 武汉: 华中科技大学, 2013. [百度学术]
Hou Y N. The estimation and application of copula function[D]. Wuhan: Huazhong University of Science and Technology, 2013. (in Chinese) [百度学术]
Khowaja K, Shcherbatyy M, Härdle W K. Surrogate models for optimization of dynamical systems[EB/OL]. 2021: arXiv: 2101.10189. https://arxiv.org/abs/2101.10189.pdf. [百度学术]
Martini M, Guanche R, Armesto J A, et al. Met-ocean conditions influence on floating offshore wind farms power production[J]. Wind Energy, 2016, 19(3): 399-420. [百度学术]
周金宇, 谢里阳, 韩文钦, 等. 基于Nataf变换的载荷相关系统风险预测方法[J]. 机械工程学报, 2009, 45(8): 137-141. [百度学术]
Zhou J Y, Xie L Y, Han W Q,et al. Method for syetem risk prediction with load dependency based on nataf transformation[J]. Journal of Mechanical Engineering, 2009, 45(8): 137-141. (in Chinese) [百度学术]
张立波, 程浩忠, 曾平良, 等. 基于Nataf逆变换的概率潮流三点估计法[J]. 电工技术学报, 2016, 31(6): 187-194. [百度学术]
Zhang L B, Cheng H Z, Zeng P L, et al. A three-point estimate method for solving probabilistic load flow based on inverse Nataf transformation[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 187-194. (in Chinese) [百度学术]
International Organization for Standardization. Calculation of load capacity of spur and helical gears - Part 6: calculation of service life under variable load: ISO 6336-6:2006 [S]. Switzerland: International Organization for Standardization, 2006. [百度学术]
International Organization for Standardization. Calculation of load capacity of spur and helical gears - Part 2: calculation of surface durability (pitting): ISO 6336-2:2006 [S]. Switzerland: International Organization for Standardization, 2006. [百度学术]
International Organization for Standardization. Calculation of load capacity of spur and helical gears - Part 3: calculation of tooth bending strength: ISO 6336-3:2006 [S]. Switzerland: International Organization for Standardization, 2006. [百度学术]
Miner M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3): A159-A164. [百度学术]
International Organization for Standardization. Calculation of load capacity of spur and helical gears - Part 5: strength and quality of materials: ISO 6336-5:2003 [S]. Switzerland: International Organization for Standardization, 2003. [百度学术]
龙腾, 刘建, Wang G G, 等. 基于计算试验设计与代理模型的飞行器近似优化策略探讨[J]. 机械工程学报, 2016, 52(14): 79-105. [百度学术]
Long T, Liu J, Wang G G, et al. Discuss on approximate optimization strategies using design of computer experiments and metamodels for flight vehicle design[J]. Journal of Mechanical Engineering, 2016, 52(14): 79-105. (in Chinese) [百度学术]
Okpokparoro S, Sriramula S. Uncertainty modeling in reliability analysis of floating wind turbine support structures[J]. Renewable Energy, 2021, 165: 88-108. [百度学术]
Rashki M, Azarkish H, Rostamian M, et al. Classification correction of polynomial response surface methods for accurate reliability estimation[J]. Structural Safety, 2019, 81: 101869. [百度学术]
Wang H, Li W B, Qian Z H, et al. Reconstruction of wind pressure fields on cooling towers by radial basis function and comparisons with other methods[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 208: 104450. [百度学术]
Bhosekar A, Ierapetritou M. Advances in surrogate based modeling, feasibility analysis, and optimization: a review[J]. Computers & Chemical Engineering, 2018, 108: 250-267. [百度学术]