摘要
以三峡库区消落带为研究对象,将化学分析与生物测试相结合,研究水位变动对消落带土壤(落干期)和沉积物(淹水期)雌激素效应物质种类和含量及雌激素活性的影响,探讨典型雌激素与雌激素效应的关联程度,以期为水库消落带生态安全和环境健康管理提供重要的数据支撑。借助超高效液相色谱-质谱(UPLC-MS)对8种典型雌激素的赋存与质量浓度进行靶向分析,并使用重组基因酵母筛选(YES)体系检测环境样品雌激素活性,通过相关性分析和浓度加和计算建立化学物质与生物效应间的相关联系。8种典型雌激素仅有雌酮(E1)和乙炔基雌二醇(EE2)被检出,含量在0.025~2.667 ng/g范围内。淹水期的沉积物具有明显的雌激素活性,其雌二醇当量(EEQ)值为0.637~6.987 ng/g。相关性分析结果显示,靶向分析的雌激素效应物质与雌激素效应间无明显相关性,仅能解释29.46%的雌激素活性。水位变动影响消落带雌激素效应物质的种类和质量浓度,淹水提高了沉积物雌激素活性。典型雌激素物质与库区消落带雌激素效应无显著关联。因此,需要开发新的方法与技术,以便更为精确地指导消落带雌激素效应的风险识别与管控。
内分泌干扰物(EDCs)是一类在环境中广泛存在,可对动物和人类的甲状腺、皮质激素、神经系统、生殖系统产生不良影响的新污染
在河流、水库和湖泊等天然与人工水体中,水文情势是污染物迁移转化的主要驱动因子。人工调控水位变动是水库区别于天然水体的重要特征之一,影响污染物在水环境中的迁移、分布、浓度及效应。与其他大型水库和湖泊相比,三峡水库具有独特的反季节水位调度运行方式,自2010年进入正常水位调控运行周期以来,三峡水库采用“蓄清排洪”的调度方式,在丰水期(夏季)以145 m低水位运行,枯水期(冬季)则以175 m高水位运行,在30 m水位变动范围内形成了与天然河流涨落季节相反的水库消落带,水位落差大、水淹时间长且具有显著的水淹梯度。水位波动使得三峡库区消落带物质交换和能量流动极为活
研究表明,三峡水库运行初期,库区重庆段的沉积物有机萃取物已经表现出显著的雌激素效
雌三醇、17β-雌二醇、17α-雌二醇、17α-乙炔雌二醇、雌酚酮、己烯雌酚、双烯雌酚和己烯雌酚的混合标准储备溶液(纯度为99%)购自上海安谱璀世标准技术服务有限公司。17β-雌二醇(E2,Sigma-Aldrich)溶于二甲亚砜(DMSO,Sigma-Aldrich)作为阳性对照(PC)储备液。所有用于样品处理和分析的溶剂(正己烷、丙酮、乙腈和甲醇)均为HPLC级。
三峡水库位于长江中上游地区,涉及重庆市和湖北省共26个区县。占地面积54 061.5 k
研究中,在三峡库区干流和典型支流共设置了5个采样点进行沉积物样品采集(见
样点 | 位置 | 经纬度 |
---|---|---|
丰都(FD) | 重庆市丰都县龙河河口 | E107°44′40″ N29°52′34″ |
高阳(GY) | 重庆市云阳县澎溪河口 | E108°41′10″ N30°56′42″ |
云阳(YY) | 重庆市云阳县高阳镇 | E108°41′30″ N31°06′15″ |
奉节(FJ) | 重庆市奉节县永乐镇 | E109°32′16″ N31°01′37″ |
巫山(WS) | 重庆市巫山县神女峰 | E110°03′39″ N31°02′47″ |
沉积物样品的预处理流程如
为了避免细胞毒性对雌激素效应测定的干扰,首先根据下述方法使用H4IIE大鼠肝癌细胞进行了细胞毒性测定(MTT法
重组酵母菌细胞购自无锡中科水质环境技术有限公司,该菌株将人类雌激素受体基因、雌激素应答表达子质粒和编码了β-半乳糖苷酶的基因转入酵母中,通过测量β-半乳糖苷酶的活性来检测样品的雌激素激动剂活
, | (1) |
式中:U为β-半乳糖苷酶活性,t、V、D分别为酶反应时间、体积和稀释系数。OD600是在600 nm处测量的吸光度,OD420和OD'420分别是样品组和阴性对照组在420 nm处的吸光度。每个样品有9个1:2的系列稀释质量浓度。
使用超高效液相色谱(UPLC)串联三重四级杆质谱(Waters Xevo TQ-S,Waters公司,美国)进行典型雌激素的含量测定,该串联质谱仪在多重反应监测(MRM)模式下运行。液相色谱柱为ACQUITY UPLC HSS T3柱(2.1 mm × 50 mm,1.8 μm粒径,Waters公司,美国),进样量为5 µL,柱温40 ℃。流动相由水(溶剂A)和乙腈(溶剂B)组成(V/V),流速400 μL/min。梯度洗脱模式按照以下条件进行:0~2 min,90%溶剂A,10%溶剂B;2~3 min,50%溶剂A,50%溶剂B;3~4.1 min:10%溶剂A,90%溶剂B;4.1~5 min,90%溶剂A,10%溶剂B。
所有实验数据均使用SPSS和Origin 2019(美国微软)进行分析。采用单因素方差分析(ANOVA)进行统计学上的差异检验,再用皮尔逊相关分析确定化学物质与雌激素作用之间的相关性(*p≤0.05和**p≤0.01)。不同的大写字母表示淹水期不同采样点的提取物产生的β-半乳糖苷酶活性在p<0.05时有显著差异,不同的小写字母表示落干期不同采样点的提取物产生的β-半乳糖苷酶活性在p<0.05时有显著差异。
为了确定E2和环境样品在YES检测中的EC20和EC50,使用Graphpad Prism(8.0版,美国)绘制质量浓度与β-半乳糖苷酶活性的剂量反应曲线并进行拟合,生物测定的雌激素当量(EEQbio)用
, | (2) |
式中:Ci指当样品雌激素活性等于E2的EC20对应的雌激素活性时样品的质量浓度。
环境样品的理论EEQ值根据浓度加和概念从目标化合物的化学分析中计算出来,理论雌激素当量(EEQchem)用
, | (3) |
式中:Ci和REPi是每个目标化学品的质量浓度和它在YES实验中的相对雌激素潜力。
细胞毒性实验结果显示,在0.08~20 mg/mL范围内,大多数沉积物样品对H4IIE细胞没有诱发细胞毒性作用。沉积物提取液对H4IIE细胞暴露48 h后,细胞存活率如

图1 落干期沉积物提取液对大鼠肝癌细胞(H4IIE)细胞存活率的效应-剂量曲线
Fig. 1 Effect-dose curves of the non-flooding sediment extract on viability of H4IIE cells

图2 淹水期沉积物提取液对大鼠肝癌细胞(H4IIE)细胞存活率的效应-剂量曲线
Fig. 2 Effect-dose curves of the flooding sediment extract on viability of H4IIE cells
使用YES实验测定了10个沉淀物样品提取物的雌激素活性(见

图3 YES测试中,三峡库区沉积物提取液在相同暴露质量浓度(100 g/L)下的β-半乳糖苷酶活性,阳性对照:17β-雌二醇(E2)诱导产生的β-半乳糖苷酶活性最大值
Fig. 3 β-galactosidase activity produced for the TGR sediment extracts at maximum exposure concentration (100 g/L) in the YES assay, Positive control: Maximum β-galactosidase activity induced by 17β-estradiol (E2)
为明晰环境雌激素效应在三峡水库的分布规律,进一步分析了最大样品暴露质量浓度(100 g/L)下雌激素活性的时空特征(见
在8种典型雌激素中,只有雌酮(E1)和乙炔基雌二醇(EE2)2种被检测到,分别为0.025~2.667 ng/g(EE2)和0.136 ng/g(E1)(见
化合物 | 淹水期(四月) | 落干期(八月) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
丰都 | 奉节 | 高阳 | 巫山 | 云阳 | 丰都 | 奉节 | 高阳 | 巫山 | 云阳 | |
雌三醇(Estriol) | — | — | — | — | — | — | — | — | — | — |
17β-雌二醇(17β-Estradiol) | — | — | — | — | — | — | — | — | — | — |
17α-雌二醇(17α-Estradiol) | — | — | — | — | — | — | — | — | — | — |
17α-乙炔雌二醇(Ethynyl estradiol) | 0.499 | 2.667 | — | 0.025 | 0.066 | — | — | — | — | — |
雌酮(Estrone) | — | — | — | — | 0.136 | — | — | — | — | — |
己烯雌酚(Diethylstilbestrol) | — | — | — | — | — | — | — | — | — | — |
双烯雌酚(Dienestrol) | — | — | — | — | — | — | — | — | — | — |
己烷雌酚(Hexestrol) | — | — | — | — | — | — | — | — | — | — |
笔者发现除高阳样点外,其余样点淹水期提取物中都检测到EE2,其中奉节的含量最高,为2.667 ng/g。空间分布上,各采样位点的EE2污染状况相差较大,并未表现出明显的流向变化趋势或干支流差异,可能与位点附近人口密度及工农产业分布差异相
为了确定三峡库区中雌激素效应的来源,通过皮尔逊相关测试分析了三峡库区沉积物样品基于1/EC50值的雌激素效应与每种测试雌激素效应物质质量浓度之间的相关性(见

图4 雌激素活性和化学分析的相关性条形图(*p<0.05,**p<0.01)
Fig. 4 Correlations between estrogenic effects and chemical analysis (*p<0.05, **p<0.01)
典型雌激素通常被认为是造成环境雌激素效应的主要物质,在低浓度下也可能产生较强的雌激素活
本研究发现典型雌激素并非三峡库区沉积物雌激素活性的主要贡献物质,为进一步明晰典型雌激素对环境样品雌激素效应解析的程度,根据检测到的可疑雌激素的含量及其相对雌激素效力(REP)值计算了每个样点的EEQchem,并与生物测定的EEQbio进行对比(见
采样点 | EEQchem-E1/(ng∙ | EEQchem-EE2/(ng∙ | EEQchem/(ng∙ | EEQbio/(ng∙ | EEQchem/EEQbio |
---|---|---|---|---|---|
丰都 | 0.000 | 0.085 | 0.085 | 4.308 | 1.970 % |
奉节 | 0.000 | 0.453 | 0.453 | 1.539 | 29.460 % |
高阳 | 0.000 | 0.000 | 0.000 | 6.987 | 0.000 % |
巫山 | 0.000 | 0.004 | 0.004 | 4.659 | 0.089 % |
云阳 | 0.007 | 0.011 | 0.018 | 0.637 | 2.893 % |
典型雌激素对三峡库区沉积物的雌激素活性贡献很小,而雌激素活性的主要贡献者仍然未知。有研究表明,由于污染物的类型越来越复杂,已知的内分泌活性物质可能无法解释雌激素活性的来
1)三峡库区中8种典型雌激素仅有雌酮(E1)和乙炔基雌二醇(EE2)被检出,含量在0.025~2.667 ng/g范围内,处于较低水平。
2)沉积物的雌激素活性在不同的水位时期,具有较大差异。淹水期的沉积物具有明显的雌激素活性,其雌二醇当量(EEQ)值为0.637~6.987 ng/g。落干期的沉积物样品,均未表现出明显的雌激素活性。水位波动和环境变化可能会影响水环境中污染物的雌激素活性。
3)典型雌激素效应物质与雌激素活性间不存在明显相关性,最多仅解释了29.46%的雌激素活性,可能还存在尚未知的雌激素活性物质。
参考文献
Liew Z, Guo P F. Human health effects of chemical mixtures[J]. Science, 2022, 375(6582): 720-721. [百度学术]
Kabir E R, Rahman M S, Rahman I. A review on endocrine disruptors and their possible impacts on human health[J]. Environmental Toxicology and Pharmacology, 2015, 40(1): 241-258. [百度学术]
Tan J S, Liu L H, Li F X, et al. Screening of endocrine disrupting potential of surface waters via an affinity-based biosensor in a rural community in the Yellow River Basin, China[J]. Environmental Science & Technology, 2022, 56(20): 14350-14360. [百度学术]
Adeel M, Song X M, Wang Y Y, et al. Environmental impact of estrogens on human, animal and plant life: a critical review[J]. Environment International, 2017, 99: 107-119. [百度学术]
Tran T K A, Yu R M K, Islam R, et al. The utility of vitellogenin as a biomarker of estrogenic endocrine disrupting chemicals in molluscs[J]. Environmental Pollution, 2019, 248: 1067-1078. [百度学术]
Pop A, Drugan T, Loghin F, et al. In vitro androgenic/anti-antiandrogenic effects of certain food additives and cosmetic preservatives[J]. Toxicology Letters, 2014, 229: S181. [百度学术]
Yoshida I, Ishida K, Yoshikawa H, et al. In vivo profiling of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced estrogenic/anti-estrogenic effects in female estrogen-responsive reporter transgenic mice[J]. Journal of Hazardous Materials, 2020, 385: 121526. [百度学术]
Tully D B, Cox V T, Mumtaz M M, et al. Six high-priority organochlorine pesticides, either singly or in combination, are nonestrogenic in transfected HeLa cells[J]. Reproductive Toxicology, 2000, 14(2): 95-102. [百度学术]
Pei S X, Jian Z J, Guo Q S, et al. Temporal and spatial variation and risk assessment of soil heavy metal concentrations for water-level-fluctuating zones of the Three Gorges Reservoir[J]. Journal of Soils and Sediments, 2018, 18(9): 2924-2934. [百度学术]
Wu Y H, Wang X X, Zhou J, et al. The fate of phosphorus in sediments after the full operation of the Three Gorges Reservoir, China[J]. Environmental Pollution, 2016, 214: 282-289. [百度学术]
Zhu L, Li X, Zhang C, et al. Pollutants’ release, redistribution and remediation of black smelly river sediment based on re-suspension and deep aeration of sediment[J]. International Journal of Environmental Research and Public Health, 2017, 14(4): 374. [百度学术]
Wang J X, Bovee T F H, Bi Y H, et al. Aryl hydrocarbon receptor (AhR) inducers and estrogen receptor (ER) activities in surface sediments of Three Gorges Reservoir, China evaluated with in vitro cell bioassays[J]. Environmental Science and Pollution Research, 2014, 21(4): 3145-3155. [百度学术]
朱毅, 田怀军, 舒为群, 等. 长江、嘉陵江(重庆段)源水有机提取物的类雌激素活性评价[J]. 环境污染与防治, 2003, 25(2): 65-67. [百度学术]
Zhu Y, Tian H J, Shu W Q, et al. Evaluation of the estrogenic activity of organic extracts from source water of Yangtze River and Jialing River in Chongqing section[J]. Environmental Pollution & Control, 2003, 25(2): 65-67.(in Chinese) [百度学术]
Li Y H, Huang S J, Qu X X. Water pollution prediction in the Three Gorges Reservoir area and countermeasures for sustainable development of the water environment[J]. International Journal of Environmental Research and Public Health, 2017, 14(11): 1307. [百度学术]
Ding X W, Zhang J J, Jiang G H, et al. Early warning and forecasting system of water quality safety for drinking water source areas in Three Gorges Reservoir area, China[J]. Water, 2017, 9(7): 465. [百度学术]
Wang J X, Bi Y H, Pfister G, et al. Determination of PAH, PCB, and OCP in water from the Three Gorges Reservoir accumulated by semipermeable membrane devices (SPMD)[J]. Chemosphere, 2009, 75(8): 1119-1127. [百度学术]
Han C N, Zheng B H, Qin Y W, et al. Impact of upstream river inputs and reservoir operation on phosphorus fractions in water-particulate phases in the Three Gorges Reservoir[J]. Science of the Total Environment, 2018, 610/611: 1546-1556. [百度学术]
Bao Y H, Gao P, He X B. The water-level fluctuation zone of Three Gorges Reservoir: a unique geomorphological unit[J]. Earth-Science Reviews, 2015, 150: 14-24. [百度学术]
Hong S, Khim J S, Ryu J, et al. Two years after the Hebei spirit oil spill: residual crude-derived hydrocarbons and potential AhR-mediated activities in coastal sediments[J]. Environmental Science & Technology, 2012, 46(3): 1406-1414. [百度学术]
Cha J, Hong S, Kim J, et al. Major AhR-active chemicals in sediments of Lake Sihwa, South Korea: application of effect-directed analysis combined with full-scan screening analysis[J]. Environment International, 2019, 133: 105199. [百度学术]
Shao Y, Zhu L Y, Chen Z L, et al. Evidence of increased estrogenicity upon metabolism of Bisphenol F: elucidation of the key metabolites[J]. Science of the Total Environment, 2021, 787: 147669. [百度学术]
Mennillo E, Cappelli F, Arukwe A. Biotransformation and oxidative stress responses in rat hepatic cell-line (H4IIE) exposed to organophosphate esters (OPEs)[J]. Toxicology and Applied Pharmacology, 2019, 371: 84-94. [百度学术]
Lei B L, Xu J, Peng W, et al. In vitro profiling of toxicity and endocrine disrupting effects of bisphenol analogues by employing MCF-7 cells and two-hybrid yeast bioassay[J]. Environmental Toxicology, 2017, 32(1): 278-289. [百度学术]
Ma M, Li J, Wang Z J. Assessing the detoxication efficiencies of wastewater treatment processes using a battery of bioassays/biomarkers[J]. Archives of Environmental Contamination and Toxicology, 2005, 49(4): 480-487. [百度学术]
Wang J Y, Wang J P, Liu J S, et al. The evaluation of endocrine disrupting effects of tert-butylphenols towards estrogenic receptor α, androgen receptor and thyroid hormone receptor β and aquatic toxicities towards freshwater organisms[J]. Environmental Pollution, 2018, 240: 396-402. [百度学术]
Prochazkova T, Sychrova E, Vecerkova J, et al. Estrogenic activity and contributing compounds in stagnant water bodies with massive occurrence of phytoplankton[J]. Water Research, 2018, 136: 12-21. [百度学术]
Wang L, Ying G G, Chen F, et al. Monitoring of selected estrogenic compounds and estrogenic activity in surface water and sediment of the Yellow River in China using combined chemical and biological tools[J]. Environmental Pollution, 2012, 165: 241-249. [百度学术]
Holbach A, Norra S, Wang L J, et al. Three gorges reservoir: density pump amplification of pollutant transport into tributaries[J]. Environmental Science & Technology, 2014, 48(14): 7798-7806. [百度学术]
Yin W P, Ji D B, Hu N S, et al. Three-dimensional water temperature and hydrodynamic simulation of Xiangxi River Estuary[J]. Advanced Materials Research, 2013, 726/727/728/729/730/731: 3212-3221. [百度学术]
Xu D Y, Gao B, Peng W Q, et al. Thallium pollution in sediments response to consecutive water seasons in Three Gorges Reservoir using geochemical baseline concentrations[J]. Journal of Hydrology, 2018, 564: 740-747. [百度学术]
Li J, Wang Z J, Ma M, et al. Analysis of environmental endocrine disrupting activities using recombinant yeast assay in wastewater treatment plant effluents[J]. Bulletin of Environmental Contamination and Toxicology, 2010, 84(5): 529-535. [百度学术]
Wang L, Ying G G, Zhao J L, et al. Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools[J]. Environmental Pollution, 2011, 159(1): 148-156. [百度学术]
Zhao J L, Ying G G, Yang B, et al. Screening of multiple hormonal activities in surface water and sediment from the Pearl River system, South China, using effect-directed in vitro bioassays[J]. Environmental Toxicology and Chemistry, 2011, 30(10): 2208-2215. [百度学术]
Hashimoto S, Horiuchi A, Yoshimoto T, et al. Horizontal and vertical distribution of estrogenic activities in sediments and waters from Tokyo Bay, Japan[J]. Archives of Environmental Contamination and Toxicology, 2005, 48(2): 209-216. [百度学术]
Yan C X, Yang Y, Zhou J L, et al. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment[J]. Environmental Pollution, 2013, 175: 22-29. [百度学术]
Chen Z B, Zhou Z Y, Peng X, et al. Effects of wet and dry seasons on the aquatic bacterial community structure of the Three Gorges Reservoir[J]. World Journal of Microbiology and Biotechnology, 2013, 29(5): 841-853. [百度学术]
Jürgens M D, Holthaus K I E, Johnson A C, et al. The potential for estradiol and ethinylestradiol degradation in English Rivers[J]. Environmental Toxicology and Chemistry, 2002, 21(3): 480-488. [百度学术]
Lei K, Lin C Y, Zhu Y, et al. Estrogens in municipal wastewater and receiving waters in the Beijing-Tianjin-Hebei region, China: occurrence and risk assessment of mixtures[J]. Journal of Hazardous Materials, 2020, 389: 121891. [百度学术]
Zhang T, Ni J P, Xie D T. Severe situation of rural nonpoint source pollution and efficient utilization of agricultural wastes in the Three Gorges Reservoir Area[J]. Environmental Science and Pollution Research, 2015, 22(21): 16453-16462. [百度学术]
Zhang C, Li Y, Wang C, et al. Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation: a review[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(1): 1-59. [百度学术]
Aris A Z, Shamsuddin A S, Praveena S M. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review[J]. Environment International, 2014, 69: 104-119. [百度学术]
Wang Y H, Wang Q Y, Hu L F, et al. Occurrence of estrogens in water, sediment and biota and their ecological risk in Northern Taihu Lake in China[J]. Environmental Geochemistry and Health, 2015, 37(1): 147-156. [百度学术]
de Alda M J L, Gil A, Paz E, et al. Occurrence and analysis of estrogens and progestogens in river sediments by liquid chromatography-electrospray-mass spectrometry[J]. Analyst, 2002, 127(10): 1299-1304. [百度学术]
卓丽, 许榕发, 石运刚, 等. 重庆长江流域水体中8种典型环境雌激素污染特征[J]. 生态毒理学报, 2020, 15(3): 149-157. [百度学术]
Zhuo L, Xu R F, Shi Y G, et al. Estrogens in surface water of the Yangtze River in Chongqing section[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 149-157.(in Chinese) [百度学术]
Wang W F, Ndungu A W, Wang J. Monitoring of endocrine-disrupting compounds in surface water and sediments of the Three Gorges Reservoir region, China[J]. Archives of Environmental Contamination and Toxicology, 2016, 71(4): 509-517. [百度学术]
李宁健, 张庆华, 张曙琳, 等. 环境内分泌干扰物雌激素的微生物降解研究进展[J]. 微生物学通报, 2023, 50(4): 1591-1606. [百度学术]
Li N J, Zhang Q H, Zhang S L, et al. Microbial degradation of estrogens in environmental endocrine disruptors[J]. Microbiology China, 2023, 50(4): 1591-1606.(in Chinese) [百度学术]
李显芳, 印成, 万巧玲, 等. 三峡库区重庆段水体中有机污染物的研究进展[J]. 环境与健康杂志, 2019, 36(7): 649-654. [百度学术]
Li X F, Yin C, Wan Q L, et al. Research progress on organic contaminants in Chongqing reach of Three Gorges Reservoir region[J]. Journal of Environment and Health, 2019, 36(7): 649-654.(in Chinese) [百度学术]
胡碧波, 阳春, 张智, 等. 嘉陵江典型城市江段的类固醇雌激素分布特性[J]. 中国给水排水, 2011, 27(21): 54-58. [百度学术]
Hu B B, Yang C, Zhang Z, et al. Distribution characteristics of steroid estrogens in a typical urban section of Jialing River[J]. China Water & Wastewater, 2011, 27(21): 54-58.(in Chinese) [百度学术]
胡莺. 三峡水库消落带水—土体系中典型环境雌激素的迁移转化研究[D]. 重庆: 重庆交通大学, 2019. [百度学术]
Hu Y. Study on migration and transformation of typical environmental estrogen in water-soil system in water-level-fluctuating zone of three gorges reservoir[D].Chongqing: Chongqing Jiaotong University, 2019. (in Chinese) [百度学术]
赵岱寅, 蔡茂雪, 张代钧, 等. 三峡库区消落带表层沉积物生物标志物时空变化与来源分析[J]. 中国环境科学, 2022, 42(6): 2810-2820. [百度学术]
Zhao D Y, Cai M X, Zhang D J, et al. Temporal and spatial variation and source analysis of biomarkers in surface sediments in the water-level-fluctuating zone of the Three Gorges Reservoir Region[J]. China Environmental Science, 2022, 42(6): 2810-2820.(in Chinese) [百度学术]
陈斌, 马伟芳, 曾凡刚, 等. 类固醇雌激素在土壤与沉积物中的污染水平及其吸附研究进展[J]. 环境工程, 2014, 32(7): 131-137. [百度学术]
Chen B, Ma W F, Zeng F G, et al. Review of steroid estrogens contamination and sorption in soil and sediment[J]. Environmental Engineering, 2014, 32(7): 131-137. (in Chinese) [百度学术]
Duong C N, Ra J S, Cho J, et al. Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries[J]. Chemosphere, 2010, 78(3): 286-293. [百度学术]
Chou P H, Lin Y L, Liu T C, et al. Exploring potential contributors to endocrine disrupting activities in Taiwan’s surface waters using yeast assays and chemical analysis[J]. Chemosphere, 2015, 138: 814-820. [百度学术]
Müller A K, Leser K, Kämpfer D, et al. Bioavailability of estrogenic compounds from sediment in the context of flood events evaluated by passive sampling[J]. Water Research, 2019, 161: 540-548. [百度学术]
Michallet-Ferrier P, Aït-Aïssa S, Balaguer P, et al. Assessment of estrogen (ER) and aryl hydrocarbon receptor (AhR) mediated activities in organic sediment extracts of the Detroit River, using in vitro bioassays based on human MELN and teleost PLHC-1 cell lines[J]. Journal of Great Lakes Research, 2004, 30(1): 82-92. [百度学术]
Luo J P, Lei B L, Ma M, et al. Identification of estrogen receptor agonists in sediments from Wenyu River, Beijing, China[J]. Water Research, 2011, 45(13): 3908-3914. [百度学术]
Murk A J, Legler J, van Lipzig M M H, et al. Detection of estrogenic potency in wastewater and surface water with three in vitro bioassays[J]. Environmental Toxicology and Chemistry, 2002, 21(1): 16-23. [百度学术]
Neale P A, Ait-Aissa S, Brack W, et al. Linking in vitro effects and detected organic micropollutants in surface water using mixture-toxicity modeling[J]. Environmental Science & Technology, 2015, 49(24): 14614-14624. [百度学术]
Schmitt S, Reifferscheid G, Claus E, et al. Effect directed analysis and mixture effects of estrogenic compounds in a sediment of the River Elbe[J]. Environmental Science and Pollution Research, 2012, 19(8): 3350-3361. [百度学术]
Kirchnawy C, Hager F, Osorio Piniella V, et al. Potential endocrine disrupting properties of toys for babies and infants[J]. PLoS One, 2020, 15(4): e0231171. [百度学术]
Song M Y, Xu Y, Jiang Q T, et al. Measurement of estrogenic activity in sediments from Haihe and Dagu River, China[J]. Environment International, 2006, 32(5): 676-681. [百度学术]